

FACULTAD DE CIENCIAS FORESTALES ESCUELA PROFESIONAL DE INGENIERÍA FORESTAL

TESIS

"INCREMENTO DEL ÁREA BASAL DE LA VEGETACIÓN MADERABLE DE UN BOSQUE DE TERRAZA MEDIA DEL CIEFOR PUERTO ALMENDRA, LORETO – PERÚ. 2020"

PARA OPTAR EL TÍTULO DE INGENIERO FORESTAL

PRESENTADO POR:

JOHNNY JUAN RUIZ VERA

ASESOR:

ING. RILDO ROJAS TUANAMA DR.

IQUITOS,PERÚ

2021

ACTA DE SUSTENTACIÓN DE TESIS № 942-CTG-FCF-UNAP-2021

En Iquitos, a los 24 días del mes de febrero del 2021, a horas 09:00 am., se dio inicio a la sustentación virtual de la Tesis titulada: "INCREMENTO DEL ÁREA BASAL DE LA VEGETACION MADERABLE DE UN BOSQUE DE TERRAZA MEDIA DEL CIEFOR PUERTO ALMENDRA, LORETO — PERÚ. 2020", aprobada con R.D. Nº 482-2019-FCF-UNAP, presentada por el bachiller JOHNNY JUAN RUIZ VERA, para obtener el Título Profesional de Ingeniero Forestal, que otorga la Universidad de acuerdo a Ley y Estatuto.

El Jurado calificador y dictaminador designado mediante R,D. Nº 0327-2020-FCF-UNAP está integrado por:

Ing. ANGEL EDUARDO MAURY LAURA, Dr.

Presidente

Ing. SEGUNDO CORDOVA HORNA, M.Sc.

Miembro

Ing. DENILSON MARCELL DEL CASTILLO MOZOMBITE, M.Sc.

Miembro

Luego de haber escuchado con atención y formulado las preguntas necesarias, las cuales fueron respondidas: Satisfactoriamente.

El jurado después de las deliberaciones correspondientes, llego a las siguientes conclusiones:

La Sustentación virtual y la Tesis han sido: Aprobadas, con la calificación Bueno.

Estando el Bachiller apto para obtener el Título Profesional de Ingeniero Forestal.

Siendo las 10.15 am, se dio por terminado el acto Académico.

Ing. ANGEL EDUARDO MAURY LAURA, Dr.

Presidente

Ing. SEGUNDO CORDOVA HORNA, M.Sc.

Miembro

Ing. DENILSON MARCELL DEL CASTILLO MOZOMBITE, M.Sc.

Miembro

Ing. RILDO ROJAS TUANAMA, Dr.

Asesor

UNIVERSIDAD NACIONAL DE LA AMAZONÍA PERUANA FACULTAD DE CIENCIAS FORESTALES ESCUELA PROFESIONAL DE INGENIERÍA FORESTAL

TESIS

"Incremento del área basal de la vegetación maderable de un bosque de Terraza media del CIEFOR Puerto Almendra, Loreto – Perú. 2020"

Tesis sustentada y aprobada el 24 de febrero del 2021, según Acta de Sustentación No 942-CTG-FCF-UNAP-2021

Ing. ANGEL EDUARDO MAURY LAURA, Dr. REG.CIP 44895 PRESIDENTE

Ing. SEGUNDO CORDOVA HÕRNA, M.Sc. REG.CIP 65032 MIEMBRO

Ing. DENILSON MARCELL DEL CASTILLO MOZOMBITE, M.Sc.

REG.CIP 71600 MIEMBRO

Ing. RILDO ROJAS TUANAMA, Dr.

REG.CIP 86706 ASESOR

DEDICATÓRIA

A mis queridos padres Juan y María Ercilia

A mis queridos hermanos, José y Rosa

AGRADECIMIENTO

- A los señores Víctor Pinedo y Jarly Isuiza por el apoyo en la identificación de especies forestales.
- A todos mis compañeros, amigos y familiares por su aliento, apoyo incondicional y colaboración durante mi formación profesional.

ÍNDICE GENERAL

	Pág.
PORTADA	i
ACTA DE SUSTENTACIÓN	ii
JURADO Y ASESOR	iii
DEDICATORIA	iv
AGRADECIMIENTO	V
ÍNDICE GENERAL	vi
ÍNDICE DE CUADROS	viii
ÍNDICE DE FIGURAS	ix
RESUMEN	x
ABSTRACT	хi
INTRODUCCIÓN	1
CAPITULO I: MARCO TEÓRICO	4
1.1. Antecedentes	4
1.2. Bases teóricas	6
1.3. Definición de términos básicos	8
CAPITULO II: HIPÓTESIS Y VARIABLES	10
2.1 Formulación de las Hipótesis	10
Hipótesis alterna	10
Hipótesis nula	10
2.2 Variables y su operacionalización	10
2.2.1 Variables	10

CAPITULO III: MÉTODOLOGIA	- 12
3.1 Diseño metodológico	- 12
3.2 Procedimientos de recolección de datos	- 13
3.3 Aspectos éticos	- 15
CAPÍTULO IV. RESULTADOS	- 16
4.1 Composición forestal del área de estudio	- 16
4.2 Número de árboles por año de evaluación	- 19
4.3 Variación del área basal por año de evaluación	- 20
4.4 Incremento del área basal de las especies forestales	- 24
CAPÍTULO V. DISCUSIÓN	- 27
CAPÍTULO VI. CONCLUSIONES	- 30
CAPÍTULO VII. RECOMENDACIONES	- 31
CAPITULO VIII. FUENTES DE INFORMACIÓN	- 32
ANEXOS	35

ÍNDICE DE CUADROS

Cuadro 1. Variables, indicadores e índices del proyecto	. 11
Cuadro 2. Composición forestal del bosque de Terraza media	16
Cuadro 3. Variación del Área basal (2011 y 2019)	21
Cuadro 4. Tasa de crecimiento en periodos de tiempo	25
Cuadro 5. Análisis de varianza	26
Cuadro 6. Composición forestal de las especies forestales	37
Cuadro 7. Inventario de la PPM de un bosque de terraza media	39

ÍNDICE DE FIGURAS

1. Mapa de ubicación del área de estudio	36
2. Curva del número de árboles por clase diamétrica bosque de Terraza medi	a 19
3. Distribución del área basal (2010 y 2018) de las especies forestales del bos	que
de Terraza media	23
4. Curva del área basal por año de evaluación	24
5. IMA e ICA del bosque de Terraza media	25
6 Ima e Ica del de las especies forestales del bosque de Terraza media	25

RESUMEN

La presente investigación se desarrolló en una parcela permanente instalada en un bosque remanente de terraza media del CIEFOR - Puerto Almendras. El objetivo fue determinar el incremento del área basal entre los años 2011 y el 2019, de las especies forestales. Durante los años 2011, 2013, 2015, 2017 y 2019 se presentaron un mayor número de individuos en las clases diamétricas inferiores y un menor número en las clases superiores, reflejando una figura tipo "j" invertida. La especie *Pourouma tomentosa* presenta la mayor variación en el área basal con 0,45 m² de variación entre el 2011 y el 2019. Tapirira guianensis presenta una variación anual de 0,23 m² y *Tachigali loretensis* un total de 0,18 m². El bosque de terraza media presenta una variación total de 3,27 m², con un acumulado de área basal en el 2011 de 9,44 m², en el 2013 de 10,25 m², en el 2015 de 10,94 m², en el 2017 de 12,14 m² y en el 2019 de 12,70 m². Entre los años 2013 - 2011 el bosque de terraza media presenta un IMA de 0,81 m²/año, entre el 2015 - 2013 presentó 0,69 m²/año, entre el 2017 - 2015 se reporta un IMA de $1,2 \text{ m}^2/\text{año}$; y entre el 2019 - 2017 se registró un IMA de $0,57 \text{ m}^2/\text{año}$. Realizar investigaciones en la parcela permanente que permita predecir su recuperación en el futuro y continuar con las remediciones para posteriores análisis del área basal hasta el estado inicial.

Palabras claves: Área basal, IMA, especies forestales.

ABSTRACT

This research was carried out in a permanent plot installed in a remnant middle-

terrace forest of the CIEFOR Puerto Almendra. The increment in the basal area of

the forest species between 2011 and 2019 was determined. During the years

2011, 2013, 2015, 2017 and 2019 there were a greater number of individuals in

the lower diameter classes and a lower number in the upper classes, reflecting an

inverted "j" trend. Pourouma tomentosa shows the highest variation in the basal

area with 0,45 m² of variation between 2011 and 2019. *Tapirira guianensis* shows

an annual variation of 0,23 m² and *Tachigali loretensis* a total of 0,18 m². The

middle-terrace forest presents a total variation of 3,27 m², with a cumulative basal

area in 2011 of 9,44 m², in 2013 of 10,25 m², in 2015 of 10,94 m², in the 2017 of

12,14 m² and in 2019 of 12,70 m². Between 2013 and 2011, the middle-terrace

forest shows an AMI of 0,81 m²/yr, between 2015 and 2013 an AMI of 0,69 m²/yr,

between 2017 and 2015 an AMI of 1,2 m²/yr; and between 2019 and 2017 an AMI

of 0,57 m²/yr was registered. In order to predict the recovery of the permanent plot

in the future and continue with the re-measurements for subsequent analysis of

the basal area until the initial state, further research in the permanent plot is

essential.

Keywords: Basal area, AMI, forest species.

хi

INTRODUCCIÓN

Las intervenciones en bosque son más o menos reguladas, con objetivos de producción claramente formulados, considerando el carácter natural del sistema de producción. Esta regulación se logra a través de una planificación del rendimiento o de la producción, la misma que debe estar guiada por el principio del rendimiento sostenido el cual se refiere al rendimiento de un bosque (Palmer y Synnott, 1991) citado por Quispe (2010, pag. 4).

Es indudable que mediante un intensivo desarrollo de la actividad forestal, la región Loreto se integre plenamente a la producción nacional, para ello el inventario y el censo forestal, es considerado el punto de partida para un plan de aprovechamiento forestal racional, desarrollando un método factible de conocer el valor potencial del estado actual de un bosque.

Los bosques húmedos tropicales se caracterizan por su compleja estructura y ecología, factores que a menudo complican su manejo; el Perú es considerado como un país con abundantes recursos naturales; caracterizado por el bosque húmedo tropical de la Amazonía Peruana; por tal razón, es necesario establecer pautas muy claras y precisas acerca del manejo de los recursos naturales (3). Uno de los problemas para proyectar y desarrollar planes de manejo silvicultural en los bosques tropicales, es la falta de conocimiento sobre la composición florística y estructura de los diferentes tipos de vegetación que permita precisar el potencial forestal del bosque (INADE, 1998, pag. 35).

En la actualidad existe escasa información sobre estudios relacionales al análisis del área basal para la toma de decisiones silviculturales del rodal para favorecer a

las especies de valor comercial que permita su aprovechamiento en el mediano tiempo, sobretodo en Loreto, por ese motivo es importante conocer dicha información, ya que servirá para la elaboración de futuros planes de manejo.

En la Amazonia peruana, el aprovechamiento forestal maderable es una de las actividades de mayor importancia debido a que contribuye a la dinámica económica de la región, posibilitando directa e indirectamente ingresos económicos a las familias de esta parte del Perú. Sin embargo, son escasos los estudios relacionados a la búsqueda de información para la toma de decisiones silviculturales que permitan al bosque recuperar su potencial productivo. El cálculo del área basal tiene el doble propósito de dar valores al potencial productivo y de tener una idea de la calidad del sitio (Mateucci et al., 1982, citado por Lendínez, 2013, pp. 116). También es una variable muy útil a la hora de calcular las existencias maderables de un monte.

Cuando nos referimos al crecimiento del rodal se debe considerar que la estructura del mismo -la distribución de los árboles por especies y clases de tamaño- cambia con la edad debido a la regeneración, el crecimiento, la mortalidad y las cortas de los árboles individuales que forman el rodal. Estos cambios en la estructura ocasionan que el crecimiento y crecimiento acumulado del rodal pueda estar referido un número distinto de árboles en diferentes momentos de desarrollo del rodal. Por lo tanto, al considerar el crecimiento se deben tener en cuenta los cambios en la estructura del mismo. Por ejemplo, si se determina el área basal del rodal al inicio y al final del período de crecimiento, entonces también debe considerarse los cambios en el número de árboles.

De acuerdo a este contexto, se hace necesario conocer sobre las condiciones actuales de la vegetación maderable a través de su composición y área basal, que permitan tomar decisiones silviculturales y de aprovechamiento sostenible.

- Identificar la composición florística de la vegetación maderable del bosque de terraza media del CIEFOR Puerto Almendra, Loreto – Perú. 2020.
- Calcular el área basal por especie comercial y no comercial del bosque de terraza media del CIEFOR Puerto Almendra, Loreto – Perú. 2020.
- Cuantificar el área basal por clase diamétrica de las especies comerciales del bosque de terraza media del CIEFOR Puerto Almendra, Loreto – Perú. 2020.
- Mensurar el incremento medio anual del área basal de las especies comerciales más importantes.

CAPITULO I: MARCO TEÓRICO

1.1 Antecedentes

En un bosque de Terraza Media que fue aprovechada hace 08 años, Rojas (2018, pag. 79), indica que la extracción de árboles en el área formó claros en el dosel, modificando la dinámica la densidad de árboles, diámetro de los árboles, área basal, crecimiento, mortalidad y reclutamiento, alterando la riqueza, el IVI, así como la dinámica del dióxido de carbono equivalente de la biomasa aérea y subterránea. La densidad promedio de árboles para el rodal con bosque regular fue 294.59 árboles/ha, para el bosque ralo 369,53 árboles/ha y para el bosque denso 457,14 árboles/ha.

Cascante y Estrada (2000, pag. 26), en un estudio realizado en un bosque húmedo premontano en el Valle Central de Costa Rica, en una parcela de 1 ha identificaron un total de 106 especies de árboles con un dap ≥10 cm, representando a 40 familias. Las leguminosas (Fabaceae) fueron el grupo de mayor diversidad con 12 especies, seguido por la familia Moraceae y Lauraceae, con diez y ocho especies respectivamente. El índice de riqueza de margalef es de 16,85 con un índice de Shannon de 3,54 y una dominancia de Simpson de 0,9640; asumiendo de acuerdo a los índices que estos bosques son muy diversos.

En Yanamono, una isla en el río Amazonas, se reportaron 300 especies de árboles y lianas con más de 10 cm de DAP y el número de individuos es de 605. Otros reportes como del grupo de Alwyn Gentry, del Jardín Botánico de Missouri, señalan que existen hasta 275 especies de árboles mayores de 10 cm de

diámetro a la altura del pecho (DAP) en Mishana, alcanzando un récord mundial (Gentry, 1988, pag. 26).

En la Parcela III del Arboretum El Huayo del CIEFOR Puerto Almendra, se realizó un inventario de todas las especies a partir de 10 cm de DAP. Las especies más abundantes fueron: *Eschweilera parvifolia* Mart. ex A. DC con el 7,46% (45 ind), *Alchornea triplinervia* (Spreng.) Mull. Arg con 5,80% (35 ind), *Eschweilera grandiflora* (Aubl.) Sandwith con 2,99% (18 ind), *Iryanthera paraensis* Huber con 2,49% (15 ind), y *Pouroma tomentosa* Mart.Subsp. Apiculata (Spruce ex Benoist) C.C. Bergcon 1,99% (12 ind) (Arévalo, 2014, pag. 36)

Asimismo, este autor reporta que las especies ecológicamente más importantes fueron: *Eschweilera parvifolia* Mart., ex A. DC con el 17,87%, *Alchornea triplinervia* (Spreng) Mull. Arg con 16,47%, *Eschweilera Coriacea* (A. DC.) S.A. Mori con 6,34%, *Cedrelinga Cateniformis* (Ducke) con 5,30%, *Escweilera grandiflora* (Aubl) Sandwith con 5,13% (A. DC.) y *Pouroma tomentosa Mart.*, con el 5,03% (Arévalo, 2014, pag. 37).

Rojas (2018, pag. 79) agrega que el diámetro promedio del rodal con bosque ralo fue de 19,89 cm, en el bosque regular 21,95 cm y en el bosque denso 23,79cm, y se acepta la hipótesis de que el cambio en diamétrico de los árboles en un corto periodo de tiempo no muestran diferencias estadísticas significativas, pero está influenciado significativamente por el tipo de bosque del rodal.

Este autor, agrega que con bosque ralo se obtuvo un área basal de 17,72 m2/ha, error estándar 0,25 m2/ha y 3,21% de Coeficiente de variación entre censos,

bosque regular fue de 16,09 m2/ha, error estándar 0,87 m2/ha y 12,13% de Coeficiente de variación entre censos. Bosque denso fue 32,52 m2/ha, error estándar 0,91 m2/ha y 6,24% de Coeficiente de variación entre censos. Se acepta la hipótesis de que el área basal de los árboles está influenciada significativamente por lo tipos de bosques y entre periodos cortos intercensales el cambio del área basal es mínimo.

1.2 Bases teóricas

El cambio climático es uno de los mayores retos que enfrentará la humanidad durante el siglo veintiuno ya que no sólo amenaza a las economías y la estabilidad social, sino que además modificará de forma definitiva la base de recursos y los procesos ecológicos que sustentan la vida en el planeta (CCMSS, 2010, pag 7)

Louman (2001, pag. 76), define el crecimiento de un árbol como su aumento de tamaño en el tiempo. Se puede expresar en términos de altura, área basal o volumen. A la magnitud del crecimiento se denomina incremento. Todo crecimiento implica un estado inicial mensurable y cambios en el estado del tiempo. Entonces podemos hablar de *incremento total* (diferencia entre un estado en un momento dado y el estado inicial), *incremento corriente anual* (incremento del último año de medición, ICA), de *incremento medio anual* (promedio por año desde el año cero (IMA), o *periódico anual* (promedio por año durante un cierto periodo (IPA), o *incremento relativo* (en porcentaje del tamaño total promedio entre el comienzo y final del periodo de medición del crecimiento IR). Esta

dinámica, activada por parámetros y factores climáticos, edafológicos, biológicos, antrópicos y a veces fenómenos accidentales, es integrada a las decisiones de ordenación forestal y a la gestión multifuncional de los bosques.

El Reglamento para la gestión forestal de la Ley Forestal y de fauna Silvestre con Decreto Supremo Nº 018-2015-MINAGRI en su artículo Nº 38, numeral 38.3 (11), define que el inventario en áreas de títulos habilitantes es el tipo de inventario que registra información cualitativa y cuantitativa de los recursos forestales en áreas de los títulos habilitantes con la finalidad de formular planes de manejo forestal.

El conocimiento de la composición florística y la estructura del bosque permite la planificación y el establecimiento de sistemas de manejo con la producción sostenible y conducción del bosque a una estructura balanceada, como las practicas silviculturales adecuadas (Souza *et al.*, 2006, pag. 4)

El estudio estructural se ocupa de la agrupación y de la valoración sociológica de las especies dentro de la comunidad y de la distribución de las mismas según formas vitales Braun y Blanquet (1979, pag. 7). La estructura de la vegetación es el arreglo espacial de las especies y la abundancia de cada una de ellas Franco et al. (1995, pag. 14)).

Los estudios estructurales son de gran interés práctico y gran interés científico, para proyectar y desarrollar correctamente los planes de manejo silvicultural en los bosques tropicales.

Louman (2001), define el crecimiento de un árbol como su aumento de tamaño en el tiempo. Se puede expresar en términos de altura, área basal o volumen. A la

magnitud del crecimiento se denomina incremento. Todo crecimiento implica un estado inicial mensurable y cambios en el estado del tiempo. Entonces podemos hablar de incremento total (diferencia entre un estado en un momento dado y el estado inicial), incremento corriente anual (incremento del último año de medición, ICA), de incremento medio anual (promedio por año desde el año 0, (IMA), o periódico anual (promedio por año durante un cierto periodo (IPA), o incremento relativo (en porcentaje del tamaño total promedio entre el comienzo y final del periodo de medición del crecimiento IR).

Esta dinámica, activada por parámetros y factores climáticos, edafológicos, biológicos, antrópicos y a veces fenómenos accidentales, es integrada a las decisiones de ordenación forestal y a la gestión multifuncional de los bosques. Finegan (1992), indica que el motor de esta dinámica son las perturbaciones (mortalidad) que resultan en la formación de los claros, además de la regeneración (reclutamiento) y el crecimiento, que permiten mantener la estructura del bosque.

1.3 Definición de términos básicos

Abundancia. Es la cantidad de individuos que se identifica para cada especie en el área de estudio (Lamprecht, 1964, pag. 85).

Altura del pecho. Altura normal de 1,30 metros (4,5 pies) del suelo hacia arriba, es la referencia que se toma para medir el diámetro de los arboles (SECF, 2005, pag. 234).

Altura total. Es la distancia vertical entre la base y el ápice del árbol (SECF, 2005, pag. 194).

Área basal. Es la sección transversal del tallo o tronco de un árbol a una determinada altura del suelo (Sociedad española de ciencias forestales, 2005, pag. 79).

Clase diamétrica. Intervalos establecidos para la medida de diámetros normales, también se refiere a los árboles, rollos, etc, incluidos en dichos intervalos (Sociedad española de ciencias forestales, 2005, pag. 159).

Diversidad. Hace referencia a la variabilidad de especies que se presentan en una dimensión espacio-temporal definido, (Ramírez, 1999, pag. 22).

Estructura de un bosque. Es un término usado para designar las diferentes distribuciones que presentan las variables medidas en un mismo plano, sea el horizontal o el vertical (Departamento de fomento forestal, 2006, pag. 8).

CAPITULO II: HIPÓTESIS Y VARIABLES

2.1 Formulación de las Hipótesis

Hipótesis principal

En el bosque de terraza media, las especies forestales maderables presentan

similar incremento del área basal entre el 2010 al 2019.

Hipótesis alterna

El incremento del área basal del bosque y de las especies maderables difiere

entre diferentes años de medición.

Hipótesis nula

El incremento del área basal del bosque y de las especies maderables no difiere

entre diferentes años de medición.

2.2 Variables y su operacionalización

2.2.1 Variables

En el Cuadro 1, se señala las variables de la vegetación arbórea maderable:

10

Cuadro 1. Variables, indicadores e índices del proyecto.

Variable(Definició n	Tipo por su naturaleza	Indicador	Escala De Medici ón	Valore s De las catego rías	Medio de verifica ción
Área basal	Número de especies por unidad de área	Cuantitativ a	m2/ha -	Nomina I	m2/ha	Formato de evaluació n
Crecimien to	Increment o del área basal en el tiempo	Cuantitativ a	- Incremento medio anual	Nomina I	- (%)	Formato de evaluaci ón

2.2.2 Operacionalización

El área basal será evaluada a partir de la medición del dap de cada árbol dentro de la parcela permanente de muestreo instalado en el bosque de terraza media. Posteriormente se aplicará la fórmula del área basal a cada árbol por cada año de evaluación para obtener el Incremento medio anual.

CAPITULO III: MÉTODOLOGIA

3.1. Diseño metodológico

La presente investigación es de nivel básico y presenta características de una investigación descriptiva.

La población estuvo conformada por todos los árboles maderables presentes en un bosque intervenido de terraza media del CIEFOR – Puerto Almendras. La muestra estuvo constituida por todos los árboles maderables presentes dentro de la Parcela Permanente de Muestreo de 0,70 ha instalados en un bosque de Terraza media.

El estudio se realizó en una Parcela Permanente de Muestreo (PPM) instalada en un bosque aprovechado de Terraza media del CIEFOR - Puerto Almendra, localizada a la margen derecha del río Nanay, afluente izquierdo del río Amazonas. Políticamente se ubica en el distrito de San Juan Bautista, provincia de Maynas, departamento de Loreto (**figura 1 del anexo**).

Geográficamente, la zona de estudio se encuentra en las siguientes coordenadas UTM:

Coordenadas UTM						
Punto	Este(x)	Norte(y)				
1	680621	9576495				
2	680692	9576385				
3	680731	9576480				
4	680656	9576505				

El estudio se desarrolló de acuerdo al tipo de investigación descriptivo correlacional y nivel de investigación básica, porque se estudiará el estado actual

de las especies forestales y tener información para que pueda ser interpretada y conocida por la comunidad científica, estudiantes y población en general.

Materiales y equipo

- Cinta diamétrica
- Brújulas Suunto.
- GPS Garmín (Sistema de Posicionamiento Global).
- Calculadoras científicas.

Equipo de gabinete.

Computadora personal, papel Bond A4 de 80 g, imagen de satélite, USB de 2 Gb, útil de escritorio en general

3.2. Procedimientos de recolección de datos

Fuentes primarias: información recolectada de tesis, artículos científicos y página web científica Google Scholar, los cuales ayudaron a la búsqueda de investigaciones similares que permitan la discusión del presente estudio.

Fuentes secundarias: Se utilizó un formato de campo diseñado por la tesista indicando lo siguientes datos: Número correlativo de árbol, especie (nombre común), categoría, Número por especie, Dap (cm), altura total (m), iluminación de copa y observaciones

Determinación de la composición florística

La composición florística fue determinada por un matero de experiencia (Señor Víctor Pinedo) que nos proporcionó el nombre común. Las especies que no pudieron ser identificadas se procedió a la colecta de muestras botánicas para ser

identificadas en el Herbario Amazonense de la Universidad Nacional de la Amazonia Peruana, constatándose en un certificado proporcionado por dicha institución.

Estimación de la variables dasométricas

El diámetro del árbol al tratarse de una remedición fue medido a la altura que se hizo la lectura anterior que será marcado con pintura amarilla o roja.

La altura del árbol fue estimado con un hipsómetro laser.

En ambos casos se realizaron lecturas posteriores a través de un muestreo de verificación para determinar el porcentaje de incertidumbre de las mediciones de estas variables.

El área basal se calculó con la fórmula siguiente:

$$G = \frac{\pi}{40000} * (DAPcm)^2$$

Incremento Medio Anual DAP, G y volumen

Para determinar el incremento medio anual se utilizaron las fórmulas propuestas por Sánchez (2016, pag. 13), teniendo en cuenta que se cuenta con mediciones desde el año 2010 al 2019 en la parcela permanente en estudio.

$$IMA = (CF-CI)/t$$

Donde:

IMA = Crecimiento medio anual

CF= Crecimiento final del periodo

CI = crecimiento inicial

t = Edad entre mediciones en años

Análisis Estadístico

La data fue procesada en el SPSS versión 23. Para contrastar la hipótesis se usará el análisis de variancia (ANOVA) para la caracterización, interviniendo como factores fijos parcelas y el área basal. Para el contraste de promedios se utilizó el test Tukey al 5% probabilidad. Para ello, previamente se validó los presupuestos del ANOVA, realizando las pruebas de homogeneidad de varianzas y de normalidad de los datos al nivel de 5% de probabilidad en concordancia con la metodología usada por Vasconcelos *et al.* (2016, p. 200-201).

Los datos sistematizados fueron agrupados en tablas de doble entrada.

3.3. Aspectos éticos

La presente investigación que se llevara a cabo en una parcela permanente instalada en bosque de terraza media del CIEFOR Puerto Almendra, cuenca del río Nanay, Loreto – Perú, el cual tiene el consentimiento del responsable de la Parcela Permanente Ing. Rildo Rojas Tuanama y del Director del CIEFOR Ing. Segundo Córdova Horna.

CAPÍTULO IV. RESULTADOS

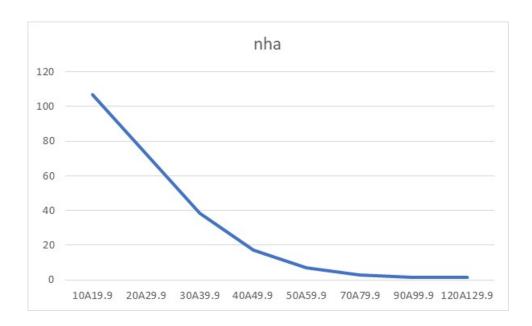
4.1. Composición forestal del área de estudio

En la parcela permanente se registraron 409 árboles mayores iguales de 10 cm de dap, los cuales esta agrupados en 122 especies, 70 géneros y 30 familias botánicas (cuadro 2).

Cuadro 2. Composición forestal del bosque de Terraza media

Nº	Especie	Género	Familia	Nombre común
1	Alchornea latifolia	Alchornea	Euphorbiaceae	Palometa huayo
2	Alchornea schomburgkii	Alchornea	Euphorbiaceae	Mojara caspi
3	Alchornea triplinervia	Alchornea	Euphorbiaceae	Zancudo caspi, zc colorado
4	Alchorneopsis floribunda	Alchorneopsis	Euphorbiaceae	Zancudo caspi blanco
5	Amaioua guianensis	Amaioua	Rubiaceae	Shamoja
6	Anaueria brasiliensis	Anaueria	Lauraceae	Añuje Řumo
7	Aniba megaphylla	Aniba	Lauraceae	Moena amarilla
8	Aniba perutilis	Aniba	Lauraceae	Moena
9	Aniba taubertiana	Aniba	Lauraceae	Moena
10	Annona duckei	Annona	Annonaceae	Anonilla
11	Aspidosperma schultesii	Aspidosperma	Apocynaceae	Quillobordon
12	Astrocaryum chambira	Astrocaryum	Arecaceae	Chambira
13	Attalea maripa	Attalea	Arecaceae	hinayuga
14	Brosimum rubescens	Brosimum	Moraceae	Palisangre
15	Brosimum utile	Brosimum	Moraceae	Chingonga
16	Buchenavia grandis	Buchenavia	Combretaceae	Yacushapana
17	Calyptranthes paniculata	Calyptranthes	Myrtaceae	Sacha guayaba
18	Caryocar glabrum	Caryocar	Caryocaraceae	Almendra, cacha guayaba
19	Caryodaphnopsis fosteri	Caryodaphnopsis	Lauraceae	Sacha palta
20	Casearia arborea	Casearia	Salicaceae	Limoncillo
21	Casearia pitumba	Casearia	Salicaceae	Uchi moena
22	Cavanillesia umbellata	Cavanillesia	Malvaceae	Tambor huayo
23	Cecropia distachya	Cecropia	Urticaceae	Cetico Blanco
24	Cecropia engleriana	Cecropia	Urticaceae	Cetico Blanco
25	Cecropia latiloba	Cecropia	Urticaceae	Cetico, c. blanco, c. colorado
26	Cecropia sciadophylla	Cecropia	Urticaceae	Cetico colorado
27	Cedrelinga cateniformis	Cedrelinga	Fabaceae	Tornillo
28	Cordia sp.	Cordia	Boraginaceae	Añallo Caspi
29	Couma macrocarpa	Couma	Apocynaceae	Chicle huayo, leche caspi
30	Crepidospermum prancei	Crepidospermum	Burseraceae	Copal
31	Dialium guianense	Dialium	Fabaceae	Azucar huaillo
32	Diplotropis purpurea	Diplotropis	Fabaceae	Chontaquiro
33	Ecclinusa lanceolata	Ecclinusa	Sapotaceae	quinilla blanca
34	Endlicheria bracteata	Endlicheria	Lauraceae	Moena
35	Endlicheria krukovii	Endlicheria	Lauraceae	Moena
36	Endlicheria sprucei	Endlicheria	Lauraceae	Moena
37	Eschweilera albiflora	Eschweilera	Lecythidaceae	Machimango, M.blanco, M. negro
38	Eschweilera bracteosa	Eschweilera	Lecythidaceae	Machimango blanco
39	Eschweilera coriacea	Eschweilera	Lecythidaceae	Machimango negro
40	Eschweilera grandiflora	Eschweilera	Lecythidaceae	Machimango blanco
41	Eschweilera tessmannii	Eschweilera	Lecythidaceae	Machimango colorado
42	Ficus americana	Ficus	Moraceae	Renaco

Cuadro 2. Composición forestal del bosque de Terraza media (Cont...)


Nº	Especie	Género	Familia	Nombre común
43	Guarea guidonia	Guarea	Meliaceae	Requia colorado
44	Guarea macrophylla	Guarea	Meliaceae	Requia, R. colorado
45	Guarea sp.	Guarea	Meliaceae	Requia
46	Guatteria elata	Guatteria	Annonaceae	Carahuasca negra
47	Guatteria megalophylla	Guatteria	Annonaceae	Carahuasca, C. negro
48	Guatteria pteropus	Guatteria	Annonaceae	Carahuasca
49	Handroanthus incana	Handroanthus	Bignoniaceae	Tahuari negro
50	Helicostylis tomentosa	Helicostylis	Moraceae	Chimicua
51	Hyeronima oblonga	Hyeronima	Euphorbiaceae	Sacha quinilla
52	Hymenaea sp.	Hymenaea	Fabaceae	Azucar huayo
53	Hymenolobium excelsum	Hymenolobium	Fabaceae	Mari mari
54	Inga brachyrhachis	Inga	Fabaceae	Shimbillo
55	Inga capitata	Inga	Fabaceae	Shimbillo
56	Inga laurina	Inga	Fabaceae	Shimbillo
57	Inga quaternata	Inga	Fabaceae	Shimbillo
58	Inga ruiziana	Inga	Fabaceae	Shimbillo
59	Inga sp.	Inga	Fabaceae	Shimbillo
60	Inga tessmannii	Inga	Fabaceae	Shimbillo colorado
61	Iryanthera grandis	Iryanthera	Myristicaceae	Cumala colorada
62	Iryanthera lancifolia	Iryanthera	Myristicaceae	Cumala colorada Cumala colorada
63	Iryanthera tessmannii	Iryanthera	Myristicaceae	Cumalilla
64	Jacaranda copaia	Jacaranda	Bignoniaceae	Huamanzamana
65	Leonia glycycarpa	Leonia	Violaceae	tamara
66	Licania blackii	Licania	Chrysobalanaceae	Parinari
	Licania macrocarpa	Licania	Chrysobalanaceae	Parinari
67	•	Licania	Chrysobalanaceae	Quinilla
68	Licania sp Licaria brasiliensis	Licaria	Lauraceae	Moena
69 70		Macoubea	-	Jarabe huayo
	Macoubea guianensis Manilkara bidentata	Manilkara	Apocynaceae	
71			Sapotaceae	Parinari, quinilla
72	Matisia malacocalyx	Matisia	Malvaceae Melastomataceae	Sacha zapote Rifari
73	Miconia myriantha	Miconia		
74	Miconia poeppigii	Miconia	Melastomataceae	Rifari Rifari
75	Miconia sp.	Miconia	Melastomataceae	Rifari
76	Miconia splendens	Miconia	Melastomataceae	
77	Miconia symplectocaulos	Miconia	Melastomataceae	Caracha caspi Rifari colorado
78	Miconia tomentosa	Miconia	Melastomataceae	
79	Minquartia guianensis	Minquartia	Olacaceae	Huacapu negro
80	Naucleopsis imitans	Naucleopsis	Moraceae	Motelo chaqui
81	Nectandra linestifelia	Nectandra	Lauraceae	Moena blanca
82	Nectandra lineatifolia	Nectandra	Lauraceae	Moena Consis magne
83	Nectandra viburnoides	Nectandra	Lauraceae	Canela moena
84	Ocotea sp.	Ocotea	Lauraceae	Moena Consistence
85	Ocotea aciphylla	Ocotea	Lauraceae	Canela moena
86	Ocotea javitensis	Ocotea	Lauraceae	Moena
87	Ocotea longifolia	Ocotea	Lauraceae	Moena, shicshi moena
88	Ocotea myriantha	Ocotea	Lauraceae	Moena blanca, puchiri moena
89	Ocotea oblonga	Ocotea	Lauraceae	Moena
90	Ocotea olivacea	Ocotea	Lauraceae	Moena
91	Ocotea sp.	Ocotea	Lecythidaceae	Machimango blanco
92	Osteophloeum platyspermum	Osteophloeum	Myristicaceae	Cumala Ilorona
93	Parkia igneiflora	Parkia	Fabaceae	Pashaco, p. blanco
94	Parkia nitida	Parkia	Fabaceae	Pashaco goma
95	Pourouma tomentosa	Pourouma	Urticaceae	Sacha ubilla
96	Protium divaricatum	Protium	Burseraceae	Copal, C. blanco
97	Protium ferrugineum	Protium	Burseraceae	Copal colorado
98	Protium sp.	Protium	Burseraceae	Copal

Cuadro 2. Composición forestal del bosque de Terraza media (Cont...)

Nº	Especie	Género	Familia	Nombre común
99	Pseudolmedia laevis	Pseudolmedia	Moraceae	Chimicua
100	Remijia pedunculata	Remijia	Rubiaceae	Cascarilla
101	Simarouba amara	Simarouba	Simaroubaceae	Marupa
102	Siparuna pachyantha	Siparuna	Siparunaceae	picho huayo
103	Sloanea guianensis	Sloanea	Elaeocarpaceae	Cepanchina
104	Socratea exorrhiza	Socratea	Arecaceae	Cashapona
105	Sterculia apetala	Sterculia	Malvaceae	Huarmi caspi
106	Sterculia peruviana	Sterculia	Malvaceae	Huarmi caspi
107	Swartzia benthamiana	Swartzia	Fabaceae	Sacha cumaceba
108	Symphonia globulifera	Symphonia	Clusiaceae	Azufre caspi
109	Tachigali loretensis	Tachigali	Fabaceae	Tangarana
110	Tachigali macbridei	Tachigali	Fabaceae	Tangarana
111	Tachigali paniculata	Tachigali	Fabaceae	Tangarana
112	Tapirira guianensis	Tapirira	Anacardiaceae	Huira caspi
113	Tetrastylidium peruvianum	Tetrastylidium	Olacaceae	Chontaquiro, huacapucillo
114	Theobroma subincanum	Theobroma	Malvaceae	Cacao colorado
115	Tovomita laurina	Tovomita	Clusiaceae	Chullachaqui caspi
116	Tovomita spruceana	Tovomita	Clusiaceae	Chullachaqui caspi
117	Virola elongata	Virola	Myristicaceae	Cumala blanca
118	Virola multinervia	Virola	Myristicaceae	Cumala negra
119	Virola sp.	Virola	Myristicaceae	Cumala blanca
120	Xylopia benthamii	Xylopia	Annonaceae	Pinsha huayo
121	Zygia basijuga	Zygia	Fabaceae	Sacha bombinsana
122	Zygia sp.	Zygia	Fabaceae	Palo cruz

4.2. Número de árboles por año de evaluación

En la figura 2, se observa que durante los años 2011, 2013, 2015, 2017 y 2019 se presentaron un mayor número de individuos en las clases diamétricas inferiores y un menor número en las clases superiores, reflejando una figura tipo "j" invertida en los años de evaluación, indicando una rápida recuperación del bosque a pesar del aprovechamiento de especies de valor comercial que ocurrió en dicha zona.

Figura 2. Curva del número de árboles por clase diamétrica del bosque de Terraza media

4.3. Variación del área basal por año de evaluación

La especie *Pourouma tomentosa* presenta la mayor variación en el área basal con 0,45 m² de variación entre el 2011 y el 2019 (cuadro 3). *Tapirira guianensis* presenta una variación anual de 0,23 m² y *Tachigali loretensis* un total de 0,18 m². Asimismo, se observa que el bosque de terraza media presenta una variación total de 3,27 m², con un acumulado de área basal en el 2011 de 9,44 m², en el 2013 de 10,25 m², en el 2015 de 10,94 m², en el 2017 de 12,14 m² y en el 2019 de 12,70 m².

En la figura 3 se observa los valores del área basal por especie entre el año 2011 y el año 2019.

Cuadro 3. Variación del Área basal (2011 y 2019)

Especie	Área Basal 2011	Área Basal 2013	Área Basal 2015	Área Basal 2017	Área Basal 2019	Rang o (11- 19)
Pourouma tomentosa	0,59	0,69	0,78	0,90	1,04	0,45
Tapirira guianensis	0,19	0,26	0,32	0,42	0,42	0,23
Tachigali loretensis	0,28	0,32	0,38	0,45	0,46	0,18
Protium divaricatum	0,39	0,41	0,44	0,51	0,52	0,14
Parkia igneiflora	0,35	0,36	0,41	0,45	0,48	0,13
Helicostylis tomentosa	0,33	0,35	0,35	0,45	0,45	0,12
Parkia nítida	0,19	0,21	0,24	0,26	0,30	0,11
Sloanea guianensis	1,15	1,21	1,21	1,23	1,25	0,10
Couma macrocarpa	0,24	0,28	0,29	0,33	0,34	0,10
Alchornea triplinervia	0,16	0,19	0,21	0,24	0,25	0,09
Tachigali macbridei	0,08	0,10	0,11	0,15	0,17	0,09
Caryocar glabrum	0,14	0,16	0,17	0,21	0,23	0,08
Hyeronima oblonga	0,06	0,07	0,08	0,13	0,14	0,07
Inga tessmannii	0,18	0,20	0,22	0,25	0,25	0,07
Eschweilera coriacea	0,07	0,12	0,12	0,13	0,13	0,06
Guatteria megalophylla	0,17	0,19	0,21	0,23	0,23	0,06
Ficus americana	0,72	0,73	0,75	0,77	0,78	0,06
Miconia splendens	0,09	0,09	0,10	0,14	0,14	0,05
Brosimum rubescens	0,38	0,41	0,41	0,41	0,43	0,05
Casearia arborea	0,04	0,04	0,05	0,05	0,09	0,05
Sterculia apetala	0,12	0,14	0,15	0,17	0,17	0,05
Crepidospermum prancei	0,08	0,08	0,09	0,09	0,12	0,04
Nectandra viburnoides	0,11	0,11	0,11	0,14	0,15	0,04
Eschweilera albiflora	0,13	0,14	0,15	0,16	0,17	0,04
Ocotea aciphylla	0,25	0,26	0,26	0,28	0,28	0,03
Virola multinervia	0,03	0,04	0,05	0,06	0,06	0,03
Endlicheria krukovii	0,02	0,03	0,04	0,05	0,05	0,03
Hymenolobium excelsum	0,07	0,08	0,08	0,09	0,10	0,03
Pseudolmedia laevis	0,06	0,07	0,08	0,09	0,09	0,03
Osteophloeum platyspermum	0,11	0,12	0,12	0,13	0,13	0,03
Brosimum utile	0,02	0,03	0,04	0,05	0,05	0,03
Iryanthera grandis	0,13	0,14	0,15	0,16	0,16	0,03
Macoubea guianensis	0,11	0,13	0,13	0,14	0,14	0,03
Cecropia sciadophylla	0,04	0,05	0,06	0,07	0,07	0,03
Dialium guianense	0,10	0,11	0,11	0,13	0,13	0,03
Naucleopsis imitans	0,06	0,06	0,07	0,08	0,08	0,02
Guatteria elata	0,07	0,07	0,08	0,09	0,09	0,02
Socratea exorrhiza	0,03	0,04	0,05	0,05	0,06	0,02
Ocotea oblonga	0,04	0,05	0,06	0,06	0,07	0,02
Eschweilera tessmannii	0,05	0,05	0,05	0,07	0,07	0,02
Calyptranthes paniculata	0,02	0,03	0,03	0,04	0,04	0,02
Inga laurina	0,02	0,03	0,04	0,04	0,04	0,02
Matisia malacocalyx	0,12	0,13	0,13	0,14	0,14	0,02
Endlicheria sprucei	0,05	0,06	0,06	0,07	0,07	0,02
Anaueria brasiliensis	0,11	0,11	0,12	0,13	0,13	0,02
Inga ruiziana	0,08	0,08	0,09	0,09	0,09	0,02
Ocotea longifolia	0,01	0,02	0,02	0,03	0,03	0,02
Swartzia benthamiana	0,04	0,04	0,04	0,05	0,05	0,02
Licania sp	0,05	0,06	0,06	0,07	0,07	0,01
Ocotea javitensis	0,10	0,10	0,11	0,12	0,12	0,01

Cuadro 3. Variación del Área basal (2011 y 2019)

(Cont...)

Especie	Área Basal 2011	Área Basal 2013	Área Basal 2015	Área Basal 2017	Área Basal 2019	Rang o (11- 19)
Aspidosperma schultesii	0,18	0,18	0,19	0,19	0,19	0,01
Alchorneopsis floribunda	0,18	0,19	0,19	0,19	0,19	0,01
Licania blackii	0,03	0,03	0,04	0,04	0,05	0,01
Virola elongata	0,05	0,05	0,06	0,06	0,06	0,01
Inga brachyrhachis	0,02	0.02	0,02	0,03	0,03	0.01
Aniba taubertiana	0,02	0,02	0,03	0,03	0,03	0,01
Jacaranda copaia	0,04	0,04	0,05	0,05	0,05	0,01
Ecclinusa lanceolata	0,01	0,01	0,01	0,01	0,02	0,01
Eschweilera grandiflora	0,06	0,07	0,07	0,07	0,07	0,01
Nectandra lineatifolia	0,01	0,01	0,01	0,02	0,02	0,01
Protium ferrugineum	0,02	0,03	0,03	0,03	0,03	0,01
Tovomita spruceana	0,01	0,01	0,01	0,01	0,02	0,01
Alchornea latifolia	0,02	0,02	0,02	0,03	0,03	0,01
Handroanthus incana	0,01	0,01	0,01	0,01	0,01	0,01
Caryodaphnopsis fosteri	0,01	0,01	0,01	0,02	0,02	0,01
Ocotea sp.	0,01	0,01	0,01	0,02	0,02	0,01
Licania macrocarpa	0,16	0,16	0,16	0,16	0,16	0,01
Theobroma subincanum	0,01	0,02	0,02	0,02	0,02	0,00
Xylopia benthamii	0,01	0,01	0,01	0,02	0,02	0,00
Buchenavia grandis	0,03	0,03	0,03	0,03	0,04	0,00
Nectandra acuminata	0,03	0,04	0,04	0,04	0,03	0,00
Zygia basijuga	0,03	0,03	0,03	0,03	0,03	0,00
Iryanthera lancifolia	0,02	0,03	0,03	0,03	0,03	0,00
Attalea maripa	0,09	0,09	0,09	0,09	0,09	0,00
Endlicheria bracteata	0,01	0,01	0,01	0,01	0,01	0,00
Tetrastylidium peruvianum	0,01	0,01	0,01	0,01	0,01	0,00
Diplotropis purpurea	0,01	0,01	0,01	0,01	0,01	0,00
Iryanthera tessmannii	0,01	0,01	0,01	0,01	0,01	0,00
Astrocaryum chambira	0,04	0,04	0,04	0,04	0,04	0,00
Virola sp.	0,02	0,02	0,02	0,02	0,02	0,00
Guarea macrophylla	0,02	0,02	0,02	0,02	0,02	0,00
Manilkara bidentata	0,01	0,01	0,01	0,01	0,01	0,00
Cedrelinga cateniformis	0,02	0,02	0,02	0,02	0,02	0,00
Miconia symplectocaulos	0,02	0,02	0,02	0,02	0,02	0,00
Licaria brasiliensis	0,01	0,01	0,01	0,01	0,01	0,00
Tovomita laurina	0,01	0,01	0,01	0,01	0,01	0,00
Total	9,44	10,25	10,94	12,14	12,70	3,27

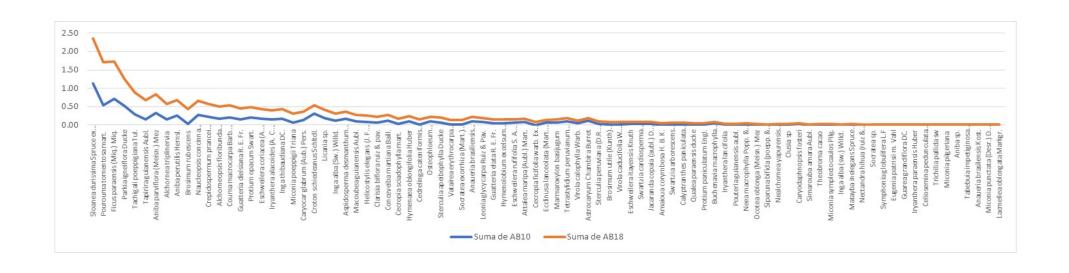


Figura 3. Distribución del área basal (2010 y 2019) de las especies forestales del bosque de Terraza media.

En la figura 4, se presenta el área basal por año de evaluación y por clase diamétrica. En los años 2011, 2013, 2015 y 2017 la clase de 30 a 39,9 cm presenta los mayores valores del área basal, sin embargo en el 2019, el mayor valor lo registra la clase diamétrica de 20 a 29,9 cm.

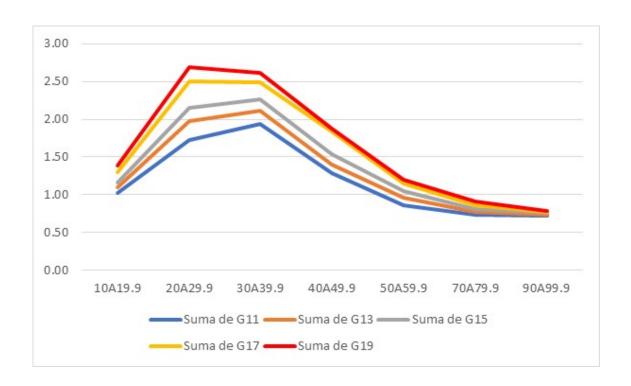


Figura 4. Curva del área basal por año de evaluación

4.4. Incremento del área basal de las especies forestales

El incremento medio anual del área basal se presenta en el cuadro 4. Entre los años 2013 - 2011 el bosque de terraza media presenta un IMA de 0,81 m²/año, entre el 2015 – 2013 presentó 0,69 m²/año, entre el 2017 – 2015 se reporta un IMA de 1,2 m²/año; y entre el 2019 – 2017 se registró un IMA de 0,57 m²/año.

Asimismo, en la figura 5 se presenta el IMA y el ICA del bosque de terraza media y en la figura 6 se presenta el IMA y el ICA de las especies forestales del bosque de terraza media.

Cuadro 4. Tasa de crecimiento en periodos de tiempo

	PERIODO					
	2013-2011 2015-2013 2017-2015 2019-2017					
IMA (m²/año)	0,81	0,69	1,2	0,57		

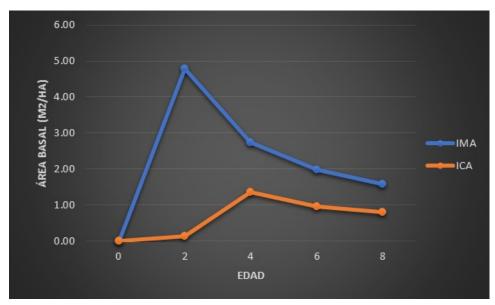


Figura 5. IMA e ICA del bosque de Terraza media.

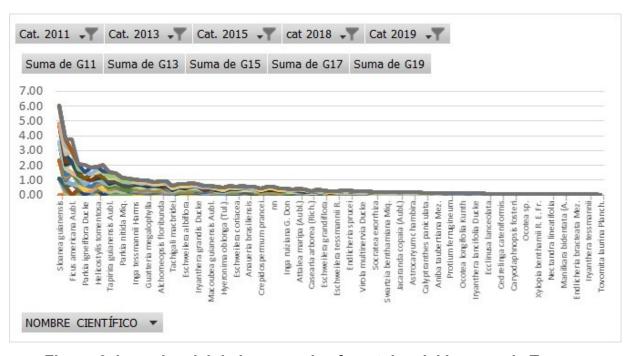


Figura 6. Ima e Ica del de las especies forestales del bosque de Terraza media

Análisis de Varianza

De acuerdo al análisis de varianza observados (p<0,05) se indica que no existe diferencias significativas entre los tratamientos, es decir, entre los promedios del área basal entre parcelas.

Cuadro 5. Análisis de varianza

Origen de las variaciones	Suma de cuadrados	Grados de libertad	Promedio de los cuadrados	F	Probabilidad	Valor crítico para F
Entre grupos	552089886	79	6988479.57	1.11603671	0.22959842	1.28178127
Dentro de los grupos	1.4565E+10	2326	6261872.49			
Total	1.5117E+10	2405				

CAPÍTULO V. DISCUSIÓN

El bosque de terraza media tuvo un aprovechamiento convencional el año 2010, lo que permitió la instalación de una parcela permanente de muestreo y a partir del 2011 se ha venido realizando periódicamente remediciones de todos los árboles existentes en dicha parcela.

En un estudio cuantitativo realizado por Rojas (2018), indica que en un bosque de Terraza media que fue aprovechada hace 08 años, la extracción de árboles en el área formó claros en el dosel, modificando la dinámica la densidad de árboles, diámetro de los árboles, área basal, crecimiento, mortalidad y reclutamiento, alterando la riqueza, el IVI, así como la dinámica del dióxido de carbono equivalente de la biomasa aérea y subterránea. La densidad promedio de árboles para el rodal con bosque regular fue 294,59 árboles/ha, para el bosque ralo 369,53 árboles/ha y para el bosque denso 457,14 árboles/ha.

Asimismo, agrega que con bosque ralo se obtuvo un área basal de 17,72 m²/ha, error estándar 0,25 m²/ha y 3,21% de Coeficiente de variación entre censos, bosque regular fue de 16,09 m²/ha, error estándar 0,87 m²/ha y 12,13% de Coeficiente de variación entre censos. Bosque denso fue 32,52 m²/ha, error estándar 0,91 m²/ha y 6,24% de Coeficiente de variación entre censos.

Sloanea guianensis, Ficus americana y Pourouma tomentosa presentan los mayores valores del área basal (1,15, 0,72 y 0,59 m2/ha en el 2011 y 1,25, 0,78 y 1,04 m2/ha en el 2019). Estas especies dominantes abarcan el 24,1% del área basal en la Parcela Permanente de Muestreo del bosque de Terraza media. En el presente estudio, *Pourouma tomentosa* presenta la mayor variación en el área

basal con 0,45 m² de variación entre el 2011 y el 2019. Esta especie tuvo un incremento del área basal superior a otras especies,

Asimismo, se observa que el bosque de terraza media presenta una variación total de $3,27~\text{m}^2$, con un acumulado de área basal en el $2011~\text{de} 9,44~\text{m}^2$, en el $2013~\text{de} 10,25~\text{m}^2$, en el $2015~\text{de} 10,94~\text{m}^2$, en el $2017~\text{de} 12,14~\text{m}^2$ y en el $2019~\text{de} 12,70~\text{m}^2$.

Según Sachtler (1977), bosques con áreas basimétricas entre 5,5 m²/ha y 6 m²/ha se pueden considerar como bosques en recuperación luego de la explotación. El presente estudio presentó un área basal de 9,44 m²/ha al momento del aprovechamiento, debido probablemente por las número de árboles (03) que fueron extraídas en el área.

En el proceso de crecimiento de los árboles intervienen diversos factores tales como el clima, agua, suelo, relieve y biología propia de la especie, entre otros. Para la expresión de ese crecimiento se utilizan una serie de variables y parámetros dasométricos, ya sea del árbol individual o de la masa.

Entre los años 2013 - 2011 el bosque de terraza media presenta un IMA de 0,81 m^2 /año, entre el 2015 - 2013 presentó 0,69 m^2 /año, entre el 2017 - 2015 se reporta un IMA de 1,2 m^2 /año; y entre el 2019 - 2017 se registró un IMA de 0,57 m^2 /año.

El estudio del incremento en diámetro, en altura y de los parámetros dasométricos tales como el área basimétrica y volumen, son necesarios para determinar ciclos de corta y regular la producción del bosque, así como organizar la masa en el tiempo y en el espacio. Cuando el interés está centrado no solo en los árboles en

pie o apeados, sino también en la cantidad de materia y en su crecimiento, el área basal puede ser un indicador de la ocupación del sitio.

CAPÍTULO VI. CONCLUSIONES

- Fueron registrados 409 árboles mayores iguales de 10 cm de dap, los cuales esta agrupados en 122 especies, 70 géneros y 30 familias botánicas.
- Durante los años 2011, 2013, 2015, 2017 y 2019 se presentaron un mayor número de individuos en las clases diamétricas inferiores y un menor número en las clases superiores, reflejando una figura tipo "j" invertida.
- La especie Pourouma tomentosa presenta la mayor variación en el área basal con 0,45 m² de variación entre el 2011 y el 2019. Tapirira guianensis presenta una variación anual de 0,23 m² y Tachigali loretensis un total de 0,18 m².
- El bosque de terraza media presenta una variación total de 3,27 m², con un acumulado de área basal en el 2011 de 9,44 m², en el 2013 de 10,25 m², en el 2015 de 10,94 m², en el 2017 de 12,14 m² y en el 2019 de 12,70 m².
- Entre los años 2013 2011 el bosque de terraza media presenta un IMA de 0,81 m²/año, entre el 2015 2013 presentó 0,69 m²/año, entre el 2017 2015 se reporta un IMA de 1,2 m²/año; y entre el 2019 2017 se registró un IMA de 0,57 m²/año.

CAPÍTULO VII. RECOMENDACIONES

- Realizar investigaciones en la parcela permanente que permita predecir su recuperación en el futuro.
- Continuar con las remediciones en el futuro para posteriores análisis del área basal hasta el estado inicial.
- Realizar tratamientos silviculturales en la parcela permanente que permita estudiar a especies de valor comercial.

CAPITULO VIII. FUENTES DE INFORMACION

- Braun Blanquet, J. 1979. Fitosociología: bases para el estudio de las comunidades vegetales, ediciones Blume. Traducido por Jorge Lalucat Jo. Madrid - España, 820 p.
- Cascante, A Y Estrada, A. 2000. Composición florística y estructura de un bosque húmedo premontano en el Valle Central de Costa Rica. Costa Rica. Brenesia 51 (en prensa).
- Brumer y Orosco 2002. Inventarios forestales para bosques latifoliados en América Central, Centro Agronómico Tropical de Investigación y Enseñanza -Catie Manual Técnico No. 50. Turrialba, Costa Rica. 265 p.
- 4. CONSEJO CIVIL MEXICANO PARA LA SILVICULTURA SOSTENIBLE (CCMSS). 2010. MONTEREY, MEXICO. 21 P.
- Departamento de Fomento Forestal. 2006. Manejo forestal: Elaboración de planes de manejo y planes operativos de aprovechamiento en bosques húmedos tropicales. Instituto Nacional Forestal. Nicaragua. 28 p.
- 6. Font-quer, P. 1975. Diccionario de botánica. Barcelona, Labor, 1244 Pág.
- 7. Franco, J. 1995. Manual de ecología. Editorial Trillas. 3ra ed. 1-266p
- 8. Gentry, A. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Mo. Bot. Gard. 75: 1-34.
- INSTITUTO NACIONAL DE DESARROLLO (INADE). 1998. Inventario de los bosques del Río Algodón. Instituto Nacional de desarrollo. Iquitos – Perú. 92 pág.

- 10. Lamprecht H. 1964. Ensayo sobre la estructura florística de la parte suroriental del bosque universitario "El Caimital". Estado Barinas. En Revista Forestal Venezolana. 6:10-11.
- 11. Lamprecht, H. 1964. Ensayo sobre la estructura florística de la parte Sur Oriental del bosque universitario "El Caimital". Rv. Forestal venezolana. V. 7, n. 10, p. 77-119.
- 12. Lamprecht, H. 1990, Silvicultura en los trópicos; los ecosistemas forestales en los bosques tropicales y sus especies arbóreas posibilidades y métodos para un aprovechamiento sostenido. Instituto de silvicultura de la universidad de Gottingen Alemania. Traducido por Antonia Garrido. Gottingen, Alemania. 335 p.
- 13. Lendínez, D.1; M. C. Iturre; P. A. Araujo y C. Gonzales García. 2013.
 Crecimiento del área basal en parcelas permanentes de inventario forestal continúo. Quebracho Vol.21 (1,2):115-120. Revista Ciencias Forestales.
- 14. Morí, J. 1999. Inventario Forestal en la Parcela VII del Arboretum CIEFOR Puerto Almendra. Práctica Pre Profesional de la Facultad de Ingeniería Forestal. UNAP. Loreto. Perú. 36 p.
- 15. Ramírez, A. 1999. Ecología Aplicada: Diseño y Análisis Estadístico. Ed. Por Alfonso Velasco Rojas. Centro Editorial: Escuela Colombiana de Ingeniería. Santa Fe de Bogotá, Colombia. 325 p.
- 16. Reglamento para la gestión forestal de la Ley Forestal y de fauna Silvestre con Decreto Supremo Nº 018-2015-MINAGRI, articulo Nº 38, numeral 38.3
- 17. Sachtler, M. 1977. "Inventario y Desarrollo Forestal del Noroeste Argentino" (Plan NOA II). Reconocimiento Forestal en la Región Noroeste. FAO DP/ARG/70/536. Informe Técnico Nº 1. Roma. 426 p.

- 18. Sánchez R. D. F. 2016. Evaluación del carbono almacenado en la biomasa, necromasa y carbono orgánico del suelo de tres diferentes hábitats en la península de osa, Costa Rica.
- 19. SOCIEDAD ESPAÑOLA DE CIENCIAS FORESTALES. 2005. Diccionario Forestal. España. 1336 p.
- 20. Souza DR, Souza AL, Leite HG & Yared JAG. 2006. Análise Estrutural em floresta ombrófila densa de terra firme não explorada, Amazônia Oriental.
 Revista Árvore, 30:75-87.

ANEXOS

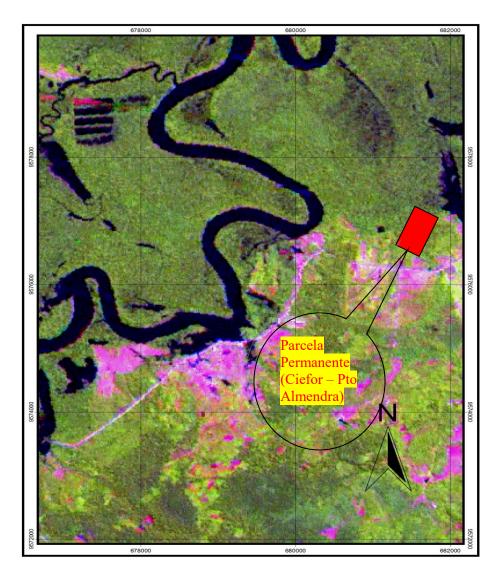


Figura 1. Mapa de ubicación del área de estudio.

Cuadro 6. Composición forestal de las especies forestales.

Especie	Género	Familia	Nombre común
Alchornea triplinervia	Alchornea	Euphorbiaceae	Zancudo caspi colorado
Alchorneopsis floribunda (Benth.) Müll. Arg.	Alchorneopsis	Euphorbiaceae	Zancudo caspi blanco
Amaioua corymbosa H. B. K.	Amaioua	Rubiaceae	Shamoja
Anaueria brasilensis Kost.	Anaueria	Lauraceae	Añuje Caspi
Anaueria brasiliensis Kosterm.	Anaueria	Lauraceae	Añuje Rumo
Aniba parviflora (Meisn.) Mez	Aniba	Lauraceae	Canela moena
Aniba perutilis Hemsl.	Aniba	Lauraceae	Moena
Aniba sp.	Aniba	Lauraceae	Uchi moena
Aspidosperma desmanthum Benth.	Aspidosperma	Apocynaceae	Quillobordon
Astrocaryum Chambira Burret	Astrocaryum	Arecaceae	Chambira
Attalea maripa (Aubl.) Mart.	Attalea	Arecaceae	Inayuga
Brosimum rubescens	Brosimum	Moraceae	Palisangre
Brosimum utile (Kunth) Pittier subsp.			g
longifolium (Ducke) C. C. Berg	Brosimum	Moraceae	Chingonga
Buchenavia macrophylla Spruce ex Eichler	Buchenavia	Combretaceae	Yacushapana
Calyptranthes paniculata Ruiz & Pav.	Calyptranthes	Myrtaceae	Sacha guayaba
Caryocar glabrum (Aub.) Pers.	Caryocar	Caryocaraceae	Almendra
Caryocar glasiam (Aus.) 1 crs.	Caryodaphnopsi	Oaryocaraccac	Americia
Caryodaphnopsis fosteri	S	Lauraceae	Sacha palta
Cecropia ficifolia warb. Ex snethl.	Cecropia	Cecropiaceae	Cetico blanco
Cecropia sciadophylla mart.	Cecropia	Cecropiaceae	Cetico colorado
Cedrelinga cateniformis (Ducke) Ducke	Cedrelinga	Fabaceae	Tornillo
Celiosemina pedunculata (H. Karst.)	Ocurcinga	Гарассас	TOTTINO
Antonelly	Celiosemina	Rubiaceae	Cascarilla
Clarisia biflora ruiz & pav.	Clarisia	Moraceae	Chimicua
Clusia sp	Clusia	Clusiaceae	Chullachaqui caspi
Conceveiba martiana Baill.	Conceveiba	Euphorbiaceae	Sacha zapote
Couma macrocarpa Barb. Rodr.	Couma	Apocynaceae	Leche caspi
Crepidospermum prancei Daly	Crepidospermu m	Burseraceae	Copal
Croton schiedeanus Schltdl.	Croton	Euphorbiaceae	Sacha quinilla
Ecclinusa lanceolata (Mart. & Eichl.) Pierre	Ecclinusa	Sapotaceae	Quinilla, q. blanca
Eschweilera coriacea (A. DC.) S. A. Mori	Eschweilera	Lecythidaceae	Machimango blanco, M. negro
Eschweilera itayensis Knuth	Eschweilera	Lecythidaceae	Machimango
Eschweilera rufifolia S. A. Mori	Eschweilera	Lecythidaceae	Machimango colorado
Eugenia patrisii m. Vahl	Eugenia	Myrtaceae	Sacha guayaba
Ficus paraensis (Miq.) Miq.	Ficus	Moraceae	Renaco
Guarea grandiflora DC.	Guarea	Meliaceae	Requia colorada
Guatteria dielsiana R. E. Fr.	Guatteria	Annonaceae	Carahuasca
Guatteria elata R. E. Fr.	Guatteria	Annonaceae	Carahuasca negra
Helicostylis elegans (J. F. Macbr.) C. C.		N4	
Berg	Helicostylis	Moraceae	Motelo chaqui
Hymenaea oblongifolia Huber	Hymenaea	Fabaceae	Azucar huayo
Hymenolobium excelsum Ducke	Hymenolobium	Fabaceae	Mari mari
Inga alba (Sw.) Willd.	Inga	Fabaceae	Shimbillo
Inga alba (sw.) Willd.	Inga	Fabaceae	Shimbillo
Inga thibaudiana DC.	Inga	Fabaceae	Shimbillo colorado
Iryanthera alacoides (A. C. Sm.) A. C. Sm.	Iryanthera	Myristicaceae	Cumala colorada
Iryanthera lancifolia	Iryanthera	Olacaceae	Huacapucillo
Iryanthera paraensis Huber	Iryanthera	Myristicaceae	Cumalilla
Jacaranda copaia (aubl.) D. Don subsp.	Jacaranda	Bignoniaceae	Huamanzamana

La amalla a ablamanta Maulani	Lasmallas	A	Chiele hugus
Lacmellea oblongata Markgr.	Lacmellea	Apocynaceae	Chicle huayo
Leonia glycycarpa Ruiz & Pav.	Leonia	Violaceae	tamara
		Chrysobalanace	
Licania sp.	Licania	ae	Parinari
Macoubea guianensis Aubl.	Macoubea	Apocynaceae	Jarabe huayo
Marmaroxylon basijugum	Marmaroxylon	Leguminosae	Sacha bobinzana
Matayba inelegans Spruce ex Radlk.	Matayba	Sapindaceae	Pinsha huayo
		Melastomatacea	
Miconia pilgeriana	Miconia	е	Rifari
		Melastomatacea	
Miconia poeppigii Triana	Miconia	е	Rifari
		Melastomatacea	
Miconia punctata (Desr.) D. Don	Miconia	е	Rifari colorado
		Melastomatacea	
Miconia symplectocaulos Pilg.	Miconia	е	Caracha caspi
Naucleopsis concinna (Standl.) C. C. Berg	Naucleopsis	Moraceae	Chimicua
Nealchornea yapurensis Huber	Nealchornea	Euphorbiaceae	Mojara caspi
Nectandra hihua (ruiz & pav.) Rohwer	Nectandra	Lauraceae	Moena amarilla
Neea macrophylla Popp. & Endl.	Neea	Nyctaginaceae	Palometa huayo
Ocotea oblonga (Meisn.) Mez	Ocotea	Lauraceae	Shicshi moena
Osteophloeum plastyspermum (A. DC.)		Myristicaceae	
Warb.	Osteophloeum	iviyiisiicaceae	Cumala Ilorona
Parkia igneiflora Ducke	Parkia	Fabaceae	Pashaco, P. goma
Pourouma tomentosa mart.	Pourouma	Cecropiaceae	Sacha uvilla
Pouteria guianensis aubl.	Pouteria	Sapotaceae	quinilla
Protium opacum Swart.	Protium	Burseraceae	Copal blanco
Protium paniculatum Engl.	Protium	Burseraceae	Copal colorado
Qualea paraensis ducke	Qualea	Vochysiaceae	Moena blanca
Simarouba amara Aubl.	Simarouba	Simaroubaceae	Marupa
Siparuna bifida (poepp. & endl.) A. Dc.	Siparuna	Monimiaceae	picho huayo
Socratea exorrhiza (Mart.) H. Wendl.	Socratea	Arecaceae	Cashapona
Socratea sp.	Socratea	Arecaceae	Cashapona
Sterculia apeibophylla Ducke	Sterculia	Malvaceae	Warmi caspi
Sterculia peruviana (D.R. Simpson) E.L.			
Taylor	Sterculia	Malvaceae	Huarmi caspi
Swartzia arborescens (Aubl.) Pittier	Swartzia	Fabaceae	Limoncillo
Swartzia cardiosperma Spruce ex Benth	Swartzia	Fabaceae	Sacha cumaceba
Symphonia globulifera L.F	Symphonia	Clusiaceae	Azufre caspi
Tabebuia impetiginosa (mart. Ex a. Dc.)	JJ		
Standl.	Tabebuia	Bignoniaceae	Tahuari negro
Tachigali poeppigiana Tul.	Tachigali	Fabaceae	Tangarana
Tapirira guianensis Aubl.	Tapirira	Anacardiaceae	Huira caspi, Wira caspi
Tetrastylidium peruvianum Sleumer	Tetrastylidium	Olacaceae	Huacapú negro
Theobroma cacao	Theobroma	Malvaceae	cacao colorado
Trichilia pallida sw	Trichilia	Meliaceae	Requia colorado
Vatairea erythrocarpa (Ducke) Ducke	Vatairea	Fabaceae	Chontaquiro
Virola caducifolia W. Rodrigues	Virola	Myristicaceae	Cumala negra
Virola caducilolla W. Rodrigues Virola calophylla Warb.	Virola	Myristicaceae	Cumala flegra
Sloanea durissima Spruce ex Benth.	Sloanea	Elaeocarpaceae	Cepanchina

*

Cuadro 7. Inventario de la PPM de un bosque de terraza media.

Especie	dap	Dap	dap	Dap
Portrio nitido Mis	2011	2013	2015	2019
Parkia nitida Miq.	49,80	52,20	55,70	61,90
Licania blackii Prance	20,40	21,00	21,90	24,10
Protium divaricatum Engl.	39,80	40,90	41,60	49,20
Inga tessmannii Harms	25,00	25,10	25,30	25,50
Protium ferrugineum (Engl.) Engl.	17,60	18,00	18,30	20,00
Socratea exorrhiza (Mart.) H. Wendl.	12,80	13,40	14,00	15,00
Sterculia apetala (Jacq.) H. Karst.	23,70	25,60	27,20	29,90
Guarea macrophylla Vahl	10,90	11,00	11,20	11,60
Crepidospermum prancei Daly	31,60	32,20	33,40	39,20
Pourouma tomentosa Mart. ex Miq.	15,90	16,40	17,20	19,40
Dialium guianense (Aubl.) Sandwith	23,10	23,60	24,30	26,50
Ocotea oblonga (Meisn.) Mez	14,60	15,90	17,50	19,40
Caryocar glabrum (Aubl.) Pers.	21,20	23,20	24,10	28,10
Helicostylis tomentosa (Poepp. & Endl.) Rusby	15,60	15,60	16,00	17,70
Inga tessmannii Harms	17,30	18,40	19,00	20,70
Pourouma tomentosa Mart. ex Miq.	15,10	17,20	20,60	27,30
Alchorneopsis floribunda (Benth.) Müll. Arg.	36,70	37,80	38,00	39,00
Caryocar glabrum (Aubl.) Pers.	23,40	24,56	26,00	28,40
Jacaranda copaia (Aubl.) D. Don	21,80	23,60	24,10	24,70
Helicostylis tomentosa (Poepp. & Endl.) Rusby	23,00	25,00	25,10	26,30
Socratea exorrhiza (Mart.) H. Wendl.	11,10	11,10	11,10	11,90
Miconia splendens (Sw.) Griseb.	29,40	30,00	30,00	32,00
Ocotea oblonga (Meisn.) Mez	10,70	11,50	11,60	15,10
Protium divaricatum Engl.	46,80	47,70	49,33	51,20
Anaueria brasiliensis Kosterm.	10,50	11,00	11,00	11,30
Eschweilera albiflora (DC.) Miers	21,10	21,50	21,60	22,80
Zygia basijuga (Ducke) Barneby & J.W. Grimes	13,30	13,50	13,68	14,30
Dialium guianense (Aubl.) Sandwith	20,70	21,00	21,10	22,90
Calyptranthes paniculata Ruiz & Pav.	16,50	18,80	20,05	22,80
Alchornea triplinervia (Spreng.) Müll. Arg.	23,70	24,00	24,50	26,30
Guatteria elata R.E. Fr.	21,80	22,70	24,00	26,30
Tachigali macbridei Zarucchi & Herend.	28,80	31,00	32,88	35,50
Cedrelinga cateniformis Ducke	10,20	10,20	10,88	13,50
Tetrastylidium peruvianum Selumer	10,60	11,10	11,10	11,90
Naucleopsis imitans (Ducke) C.C. Berg	23,20	24,50	24,80	26,60
Diplotropis purpurea (Rich.) Amshoff	10,30	10,60	10,82	11,60
Helicostylis tomentosa (Poepp. & Endl.) Rusby	35,90	36,00	36,20	37,10
Caryocar glabrum (Aubl.) Pers.	25,10	25,50	25,50	32,00
Alchornea triplinervia (Spreng.) Müll. Arg.	10,30		12,00	
		11,80		13,30
Theobroma subincanum Martius in Buchner	13,20	14,30	14,70	15,30
Iryanthera grandis Ducke	20,90	21,00	21,30	22,20
Pourouma tomentosa Mart. ex Miq.	42,70	43,00	44,20	44,70
Pourouma tomentosa Mart. ex Miq.	23,40	25,20	28,10	32,00
Iryanthera lancifolia Ducke	11,50	11,78	11,80	12,10
Protium divaricatum Engl.	24,90	26,70	27,00	29,00
Attalea maripa (Aubl.) Mart.	33,70	34,10	34,20	34,20
Pourouma tomentosa Mart. ex Miq.	11,30	11,31	11,40	12,10
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	10,00	10,10	10,30	10,60
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	20,60	20,70	20,70	22,00
Ocotea oblonga (Meisn.) Mez	18,60	20,40	20,40	21,70
Couma macrocarpa Barb. Rodr.	19,40	20,30	20,30	23,20
Guatteria megalophylla Diels	34,80	36,00	38,30	40,50

Iryanthera lancifolia Ducke Couma macrocarpa Barb. Rodr.	13,00	13,70	12 70	4400
		13,70	13,70	14,30
	45,10	48,40	48,40	50,00
Alchornea schomburgkii Klotzsch	13,60	15,60	15,60	17,80
Tovomita spruceana Planch. & Triana	10,70	11,50	12,40	14,30
Swartzia benthamiana Miq.	13,50	14,70	16,70	18,40
Inga laurina (Sw.) Willd.	17,40	20,10	21,70	23,30
Ocotea aciphylla (Nees) Mez	52,40	53,20	53,90	56,00
Alchornea triplinervia (Spreng.) Müll. Arg.	14,00	14,60	15,70	16,60
Alchornea triplinervia (Spreng.) Müll. Arg.	13,20	21,00	26,30	29,60
Tapirira guianensis Aubl.	18,60	21,00	25,90	29,20
Socratea exorrhiza (Mart.) H. Wendl.	10,80	14,00	16,00	18,60
Pourouma tomentosa Mart. ex Miq.	36,20	39,00	44,20	48,00
Cecropia sciadophylla Mart.	23,80	24,60	26,70	30,10
Tapirira guianensis Aubl.	26,30	28,30	30,20	37,40
Ocotea aciphylla (Nees) Mez	13,70	13,70	13,70	14,50
Iryanthera grandis Ducke	10,40	10,40	10,40	10,70
Anaueria brasiliensis Kosterm.	16,30	16,30	16,50	17,40
Ocotea aciphylla (Nees) Mez	15,30	15,30	15,60	15,80
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	11,90	12,00	12,10	12,80
Ocotea sp.	11,80	12,70	13,40	14,60
Virola sp.	14,10	14,10	14,60	14,90
Inga tessmannii Harms	13,60	18,20	19,00	24,60
Brosimum utile (Kunth) Oken ex J. Presl	16,80	19,10	21,80	25,20
Endlicheria krukovii (A.C. Sm.) Kosterm.	17,50	21,00	22,60	26,30
Sterculia apetala (Jacq.) H. Karst.	11,90	14,10	18,40	21,40
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	12,00	12,40	12,50	12,90
	18,30			
Dialium guianense (Aubl.) Sandwith		18,70	19,00	20,20
Sterculia apetala (Jacq.) H. Karst.	31,30	33,10	34,00	35,20
Cedrelinga cateniformis Ducke	15,50	15,60	15,65	15,80
Helicostylis tomentosa (Poepp. & Endl.) Rusby	16,40	17,50	17,50	19,50
Aspidosperma schultesii Woodson	47,60	48,40	48,60	49,40
Pourouma tomentosa Mart. ex Mig.	33,40	34,70	36,00	41,80
Pourouma tomentosa Mart. ex Mig.	29,10	32,50	35,33	39,30
Pourouma tomentosa Mart. ex Miq.	12,80	13,40	13,40	15,10
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	11,00	11,40	11,60	11,80
Iryanthera tessmannii Markgr.	10,70	11,00	11,00	11,80
Endlicheria bracteata Mez.	10,70	11,00	11,00	12,10
Brosimum rubescens Taub.	70,00	72,00	72,00	74,40
Virola multinervia Ducke	19,80	22,00	24,90	28,40
Eschweilera albiflora (DC.) Miers	33,40	34,90	35,96	37,70
Hyeronima oblonga (Tul.) Muell. Arg.	21,30	23,60	24,30	34,20
Ecclinusa lanceolata (Mart. & Eichler) Pierre	11,60	12,10	12,40	16,20
Macoubea guianensis Aubl.	38,00	40,10	40,80	42,30
Guatteria elata R.E. Fr.	14,20	14,10	15,50	15,50
Hyeronima oblonga (Tul.) Muell. Arg.	18,20	19,70	21,40	23,50
Tapirira guianensis Aubl.	38,00	44,90	50,44	56,20
nn	37,70	38,00	38,88	38,20
Swartzia benthamiana Miq.	16,30	16,80	16,86	17,40
Helicostylis tomentosa (Poepp. & Endl.) Rusby	30,50	31,20	31,51	44,80
Leonia glycycarpa Ruiz & Pav.	30,50	31,20	31,51	32,40
Protium divaricatum Engl.	14,50	15,70	16,40	16,90
Tachigali loretensis van der Werff	32,60	37,56	40,42	45,70
Eschweilera coriacea (DC.) S.A. Mori	21,40	31,00	31,00	32,20
	20,10	20,10	20,10	21,40
Buchenavia grandis Ducke	20,10			
	15,00	15,00	16,55	19,30
Buchenavia grandis Ducke				

T				
Hymenolobium excelsum Ducke	27,00	28,80	29,98	32,20
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	12,20	12,70	13,00	13,30
Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr.	25,40	27,40	29,10	31,30
Iryanthera grandis Ducke	16,10	16,80	17,00	17,50
Tachigali loretensis van der Werff	32,80	34,60	39,10	43,50
Guatteria elata R.E. Fr.	14,00	14,40	14,40	15,90
Pseudolmedia laevis (Ruiz & Pav.) J.F. Macbr.	11,30	11,30	12,20	12,50
Eschweilera coriacea (DC.) S.A. Mori	21,40	23,30	24,00	25,60
Virola elongata (Benth.) Warb.	10,40	10,60	10,80	10,90
Anaueria brasiliensis Kosterm.	17,00	17,00	17,00	17,60
Nectandra acuminata (Nees & C. Mart.) J.F. Macbr.	19,10	21,20	21,20	20,40
Anaueria brasiliensis Kosterm.	14,80	15,00	15,27	16,20
Endlicheria sprucei (Meisn.) Mez	25,20	26,70	27,00	29,40
Ocotea aciphylla (Nees) Mez	10,90	12,00	13,30	13,70
Nectandra lineatifolia (Ruiz & Pav.) Mez	10,20	10,20	10,20	14,20
Parkia igneiflora Ducke	66,60	68,00	71,93	78,20
Anaueria brasiliensis Kosterm.	14,40	14,40	14,40	15,00
Caryodaphnopsis fosteri van der Werff	12,40	12,40	13,10	15,20
Handroanthus incana A. H. Gentry	10,30	10,30	10,30	13,60
Licania sp	26,00	27,00	28,00	29,40
Eschweilera albiflora (DC.) Miers	10,00	10,50	11,50	13,60
Osteophloeum platyspermum (Spruce ex A. DC.) Warb.	21,20	22,00	22,00	22,90
Ocotea longifolia Kunth	13,70	15,50	16,39	19,70
Ocotea javitensis (Kunth.) Pittier	36,30	36,50	38,20	38,80
Inga tessmannii Harms	34,80	35,20	38,10	39,50
Manilkara bidentata (A. DC.)	12,80	13,00	13,00	13,20
Pourouma tomentosa Mart. ex Miq.	17,90	28,70	28,70	30,00
Xylopia benthamii R. E. Fr.	12,20	12,30	12,36	14,30
Inga ruiziana G. Don	22,60	22,90	23,60	24,40
Licaria brasiliensis (Nees) Kosterm.	12,50	12,50	12,50	12,60
Licania macrocarpa Cuatrec.	28,10	28,70	28,70	28,70
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	13,30	13,30	13,60	14,30
Helicostylis tomentosa (Poepp. & Endl.) Rusby	31,00	31,20	31,20	32,00
Casearia arborea (Rich.) Urb.	14,10	14,80	15,00	15,30
Tachigali loretensis van der Werff	37,00	38,00	41,00	42,90
Zygia basijuga (Ducke) Barneby & J.W. Grimes	12,10	13,00	13,00	13,00
Alchorneopsis floribunda (Benth.) Müll. Arg.	31,00	31,00	31,00	31,00
Alchornea latifolia Sw.	16,00	17,00	17,66	18,60
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	14,10	14,30	15,00	15,20
Couma macrocarpa Barb. Rodr.	26,40	27,60	30,81	36,10
Guatteria megalophylla Diels	31,10	33,00	34,83	36,00
Iryanthera grandis Ducke	23,10	23,20	23,40	23,70
Guarea macrophylla Vahl	10,80	10,80	10,80	11,00
Inga ruiziana G. Don	21,20	22,00	23,55	24,30
Nectandra viburnoides Meisn.	14,30	14,30	14,30	14,40
Pourouma tomentosa Mart. ex Miq.	17,00	18,10	18,14	18,90
Licania macrocarpa Cuatrec.	34,90	34,90	34,90	35,40
Eschweilera tessmannii R. Knuth	24,60	24,80	25,80	29,50
Matisia malacocalyx (A. Robyns & S. Nilsson) W.S. Alverson	10,10	11,00	11,00	10,80
Aniba taubertiana Mez.	16,60	17,00	19,00	20,50
Sloanea guianensis (Aubl.) Benth.	121,00	124,00	124,00	126,00
Virola elongata (Benth.) Warb.	11,90	12,30	13,00	13,20
Eschweilera grandiflora (Aubl.) Sandwith	26,10	27,10	27,12	27,60
Tovomita laurina Planch. & Triana	10,00	10,00	10,00	10,00
Eschweilera grandiflora (Aubl.) Sandwith	11,70	12,10	12,60	13,10
Ficus americana Aubl.	06.00	06.70	00 00	99,60
Virola elongata (Benth.) Warb.	96,00 18,50	96,70 19,60	98,00	21,30

Casearia arborea (Rich.) Urb.	13,10	14,25	14,40	14,40
Casearia arborea (Rich.) Urb.	11,40	12,20	13,00	26,00
Nectandra viburnoides Meisn.	34,30	35,25	35,20	40,80
Alchornea triplinervia (Spreng.) Müll. Arg.	30,30	31,00	31,20	31,90
Alchornea triplinervia (Spreng.) Müll. Arg.	13,80	14,20	14,20	18,40
Caryocar glabrum (Aubl.) Pers.	13,90	15,00	15,10	15,70
Miconia symplectocaulos Pilg.	14,40	14,50	14,50	14,50
Anaueria brasiliensis Kosterm.	17,90	18,30	19,40	20,30
Inga brachyrhachis Harms	15,70	16,50	16,50	19,90
Pourouma tomentosa Mart. ex Miq.	21,60	22,10	22,96	43,10
Astrocaryum chambira Burret	23,00	23,00	23,00	23,50
Tachigali macbridei Zarucchi & Herend.	15,20	16,00	16,87	30,90
Hymenolobium excelsum Ducke	12,60	12,70	12,80	14,70
Alchornea triplinervia (Spreng.) Müll. Arg.	14,00	14,00	14,00	14,00
Osteophloeum platyspermum (Spruce ex A. DC.) Warb.	30,10	31,40	33,00	34,50
Miconia splendens (Sw.) Griseb.	15,40	15,50	19,80	27,20
Iryanthera grandis Ducke	19,50	21,00	22,40	24,30