

FACULTAD DE CIENCIAS FORESTALES

ESCUELA PROFESIONAL DE INGENIERÍA EN ECOLOGÍA DE BOSQUES TROPICALES

TESIS

"EVOLUCIÓN TEMPORAL DE LA VEGETACIÓN DEL ARBORETUM "EL HUAYO" EN EL PERIODO 2019 - 2022 APLICANDO ÍNDICES DE VEGETACIÓN, SAN JUAN BAUTISTA, LORETO – PERÚ. 2022"

PARA OPTAR EL TÍTULO PROFESIONAL DE

INGENIERA EN ECOLOGÍA DE BOSQUES TROPICALES

PRESENTADO POR:

PETRONILA ISABEL GÓMEZ SIMONS

ASESOR:

Ing. JOSÉ DAVID URQUIZA MUÑOZ, M.Sc.

IQUITOS, PERÚ

2023

Facultad de Ciencias Forestales

ACTA DE SUSTENTACIÓN DE TESIS № 055-CTG-FCF-UNAP-2023

En Iquitos, en la sala de conferencias de la Facultad de Ciencias Forestales, a los 13 días del mes de setiembre del 2023, a horas 02:00 pm., se dio inicio a la sustentación pública de la tesis: "EVOLUCIÓN TEMPORAL DE LA VEGETACIÓN DEL ARBORETUM "EL HUAYO" EN EL PERIODO 2019 - 2022 APLICANDO INDICES DE VEGETACION, SAN JUAN BAUTISTA, LORETO – PERÚ. 2022", aprobado con R.D. Nº 0525-2022-FCF-UNAP y modificado con R.D. Nº 0456-2023-FCF-UNAP, presentado por la bachiller PETRONILA ISABEL GÓMEZ SIMONS, para optar el Título Profesional de Ingeniera en Ecología de Bosques Tropicales, que otorga la Universidad de acuerdo a Ley y Estatuto.

El Jurado calificador y dictaminador designado mediante R.D. Nº 0376-2023-FCF-UNAP, está integrado por:

Ing. Richer Rios Zumaeta, Dr. Ing. Ronald Burga Alvarado, Dr. Ing. Lizardo Manuel Fachin Malaverri, M.Sc.

: Presidente : Miembro : Miembro

Luego de haber escuchado con atención y formulado las preguntas necesarias, las cuales fueron respondidas:

El jurado después de las deliberaciones correspondientes, liegó a las siguientes conclusiones:

La sustentación pública y la tesis han sido: AProsponf con la calificación de MCZ Puran

Estando la bachiller apta para obtener el Título Profesional de Ingeniera en Ecología de Bosques Tropicales.

12.1) Se dio por terminado el acto Al DEDICO Siendo las

Ulua Ing. RICHER/RIOS ZUMAETA, Dr. Presidente

Ing. RONALD BURGA ALVARADO, Dr. Miembro

Ing. LIZARDO MANUEL FACHIN MALAVERRI, M.Sc. Miembro

Ing. JOSÉ DAVID URQUIZA MUÑOZ, M.Sc. Asesor

Conservar los bosques benefician a la humanidad iNo lo destruyas! Cludad Universitaria "Puerto Almendra", San Juan, Iquitos-Perú www.unapiquitos.edu.pe Teléfone: 065-225303

ESCUELA PROFESIONAL DE INGENIERÍA EN ECOLOGÍA DE BOSQUES TROPICALES

TESIS

"Evolución temporal de la vegetación del Arboretum "El Huayo" en el periodo 2019 - 2022 aplicando Índices de Vegetación, San Juan Bautista, Loreto – Perú. 2022"

MIEMBROS DEL JURADO

unae

Ing. Richer Rios Zumaeta, Dr. Presidente REGISTRO CIP N° 50411

Aut

Ing. Ronald Burga Alvarado, Dr. Miembro REGISTRO CIP N° 45725

Ing. Lizardo Manuel Fachin Malaverri, M. Sc. Miembro REGISTRO CIP N° 66065

Ing. Jose David Urquiza Muñoz, M. Sc. Asesor REGISTRO CIP N° 181468

Reporte de similitud

NOMBRE DEL TRABAJO AUTOR FCF_TESIS_GOMEZ SIMONS.pdf PETRONILA ISABEL GOMEZ SIMONS RECUENTO DE PALABRAS RECUENTO DE CARACTERES 6449 Words 33052 Characters RECUENTO DE PÁGINAS TAMAÑO DEL ARCHIVO 789.2KB 25 Pages FECHA DE ENTREGA FECHA DEL INFORME Dec 15, 2023 7:37 PM GMT-5 Dec 15, 2023 7:38 PM GMT-5

20% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base «

- · 19% Base de datos de Internet
- 1% Base de datos de publicaciones
- Base de datos de Crossref
- Base de datos de contenido publicado de Crossr
- 9% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

Material bibliográfico

· Coincidencia baja (menos de 10 palabras)

ÍNDICE GENERAL

PORTADA	i
ACTA DE SUSTENTACIÓN	ii
JURADO Y ASESOR	iii
RESULTADO DEL INFORME DE SIMILITUD	iv
ÍNDICE GENERAL	v
ÍNDICE DE CUADROS	vi
ÍNDICE DE FIGURAS	vii
RESUMEN	ix
ABSTRACT	x
INTRODUCCIÓN	
CAPÍTULO I. MARCO TEÓRICO	2
1.1. Antecedentes	2
1.2. Bases Teóricas	3
1.3. Definición de términos básicos	7
CAPÍTULO II. HIPOTESIS Y VARIABLES	8
2.1. Formulación de la hipótesis	8
2.2. Variables y su operacionalización	8
CAPÍTULO III. METODOLOGÍA	9
3.1. Tipo y diseño	9
3.2. Diseño muestral	9
3.3. Procedimientos de recolección de datos	9
3.4. Procesamiento y análisis de los datos	10

CAPÍTULO IV. RESULTADOS	12
4.1. Imágenes analizadas y set de datos.	12
4.2. Dinámica temporal de los índices en el bosque del Arboretum El Huayo- período 2019-2022 a escala anual.	13
4.2. Estado de conservación del Arboretum el Huayo.	15
CAPÍTULO V. DISCUSIÓN	18
5.1. Índices de vegetación para el monitoreo de bosques	18
5.2. Dinámicas del bosque del Arboretum el huayo	20
CAPÍTULO VI. CONCLUSIONES	22
CAPÍTULO VII. RECOMENDACIONES	23
CAPÍTULO VIII. FUENTES DE INFORMACIÓN	24
ANEXOS	31

ÍNDICE DE CUADROS

N°	Descripción	Pág.
1.	Propiedades de bandas y aplicaciones del satélite Sentinel 2A que se	
	usaron en el presente estudio.	5
2.	Variables utilizadas en el estudio.	8

ÍNDICE DE FIGURAS

N°	Descripción	Pág.
1.	Esquema de un sistema de teledetección.	4
2.	Interpretación de valores de los Índices de Vegetación.	11
3.	Distribución de número de escenas por mes en el periodo de estudio.	12
4.	Dinámica temporal de los valores de Índices para cada año, a) NDVI y	
	b) EVI. La línea roja entre cortada muestra el promedio del índice	
	tomando en cuenta todos los años. La línea entrecortada azul muestra	
	el promedio del índice antes del 2022.	14
5.	Análisis de tendencia temporal (días evaluados) de los índices de	
	vegetación. La línea azul representa el modelo lineal y el área gris	
	sombreada representa el Intervalo de confianza (CI=95%).	15
6.	Estado de conservación del Arboretum El Huayo.	17
7.	Mapa de ubicación Arboretum El Huayo.	32

RESUMEN

En este estudio de investigación se analizaron 294 imágenes satelitales Sentinel 2A para el periodo 2019-2022, con la finalidad de estimar, comparar y describir el NDVI y EVI, para conocer la evolución y dinámica de la vegetación sobre el Arboretum El Huayo. El Arboretum El Huayo se ubica en las coordenadas UTM 680729 E, 9576316 N, de altitud de 122 metros sobre el nivel del mar (msnm), el cual se encuentra ubicado políticamente en la provincia de Maynas, distrito de San Juan Bautista, departamento de Loreto, Perú, y tiene una extensión de 18 hectáreas.

Los valores de reflectancia fueron obtenidos, manejados y procesados a partir de la colección de imágenes utilizando la plataforma Google Earth Engine. Se utilizaron centroides de pixeles por año para extraer los valores de los índices de vegetación de cada píxel (606,300 observaciones en total) posteriormente organizados cronológicamente del 2019 – 2022. Nuestro resultado sugiere una tendencia a la baja estadísticamente significativa en los valores del índice de vegetación (<0.05 por año para ambos índices). Para el estado de conservación del área de estudio, se utilizó la mediana del EVI, que muestra una ligera tendencia decreciente, aunque la vegetación es moderadamente saludable. Este es el primer monitoreo a más largo plazo sobre el Arboretum El Huayo y proporciona un método novedoso y bien documentado para establecer una línea base que pueda replicarse en otras áreas.

Palabras clave: Evolución temporal, Arboretum El Huayo, índices de vegetación, Sentinel 2 A, dinámica del bosque.

ABSTRACT

In this research study, 294 Sentinel 2A satellite images were analyzed for the period 2019-2022, in order to estimate, compare and describe the NDVI and EVI, to know the evolution and dynamics of the vegetation over the Arboretum EI Huayo. Arboretum el Huayo is located on UTM coordinates 680729 E, 9576316 N, altitude 122 meters above sea level (masl), which is politically located in the province of Maynas, district of San Juan Bautista, department of Loreto, Peru, and has an area of 18 hectares.

The reflectance values were obtained, managed and processed from the collection of images using Google Earth Engine platform. Centroids of pixels per year were using to extract the values of each pixel vegetation indices (606,300 observations in total), subsequently organized chronologically from 2019 – 2022. Our result suggest a statistically significant downward trend in Vegetation Index values (<0.05 per year for both indices). For the conservation status of the study area, the median EVI was used, which shows a slight decreasing trend, although the vegetation is moderately healthy. This is the first most longer term monitoring over the Arboretum EI Huayo and provide a novel and well-documented method to stablish a base line that can replicated to other areas.

Keywords: Temporal evolution, Arboretum El Huayo, vegetation indices, Sentinel 2 A, forest dynamics.

INTRODUCCIÓN

En las últimas décadas, el monitoreo del estado de conservación, la degradación y la deforestación de bosques tropicales, viene siendo ampliamente abordado mediante la integración de datos de sensores remotos (principalmente satelitales), datos de inventarios forestales y otros datos biológicos. En ese contexto, muchas propuestas tecnológicas han estado principalmente orientadas al desarrollo de herramientas y metodologías bien documentadas para medir la deforestación a diferentes escalas globales, regionales y locales. En contraste, la evaluación de la degradación ha impulsado el desarrollo de diversos índices espectrales (como NDVI, EVI, NDFI, etc) ampliamente usados y que permiten medir las características fenológicas del bosque en un contexto bastante más local. Por otro lado, el avance es menos desarrollado para el caso de las dinámicas del bosque, donde por ahora los inventarios de recursos y sus remediciones siguen siendo (y serán) la base de los análisis de estacionalidad, estructura y composición. Como mencionamos antes, la combinación de índices espectrales y datos de campo representa una gran oportunidad para la mejora de nuestro entendimiento de las dinámicas del bosque de manera aún referencial pero más precisa. En la actualidad, la tendencia científica se muestra abierta a compartir recursos informáticos y grandes bases de datos, como es el caso de Google Earth Engine, que ha puesto a disposición de la comunidad científica bases de datos satelitales de diferentes sensores, además de recursos informáticos (supercomputadoras) de manera casi gratuita y a escala global. Es en ese sentido que, la presente investigación ha recolectado y procesado una masiva cantidad de imágenes satelitales del sensor Sentinel 2A disponibles para el área del Arboretum "El Huayo". Sobre estas imágenes se aplicó dos de los más estado índices reconocidos para la evaluación del de conservación/degradación de bosques con el objetivo de evaluar la evolución temporal y espectral de la vegetación del Arboretum "El Huayo" aplicando índices de vegetación NDVI y EVI en el periodo 2019–2022.

Este estudio representa un hito importante para la implementación de un sistema de monitoreo constante del Arboretum y que, combinado con los muchos estudios realizados ahí, presenta un potencial para análisis más profundos de la dinámica del bosque.

1

CAPÍTULO I. MARCO TEÓRICO

1.1. Antecedentes

Los estudios de las propiedades físicas de la superficie terrestre medidas por los sensores de los satélites de teledetección, son muy escasos, no sólo en el área de interés sino en todo el departamento de Loreto. A nivel mundial, el monitoreo de bosques tropicales utiliza datos del satélite Landsat que ya han sido reportados (Broich et al., 2011; Harris et al., 2012). Sin embargo, la principal limitante de este tipo de datos es la presencia de cobertura nubosa, problema que está siendo superado con la utilización de los mejores píxeles de todas las escenas disponibles para el periodo en estudio (Vargas Gonzáles, 2014).

El monitoreo de cambios requiere de comparaciones cuantitativas, basado en estimaciones físicas de la reflectancia de la superficie, que provee la representación más aproximada de las propiedades de la superficie terrestre. La consistencia y replicación de resultados del monitoreo global y temporal del cambio de la cobertura de la tierra como objetivo central de los estudios en las ciencias de la tierra, requiere que las comparaciones básicas realizadas imagen a imagen sean basadas en datos representados en la misma escala temática de medición (Feng et al., 2013).

En Loreto se han hecho análisis donde se demuestra la importancia y potencial en la detección de cambios y evolución temporal en los bosques de esta región a través de sensores remotos. Se mostró la posibilidad de modelar la relación entre características forestales medidas en el campo con los valores de reflectancia de las bandas (y relaciones entre estas) que constituyen una imagen de satélite Landsat 5 TM, y características topográficas derivadas de Modelos de elevación digital (DEM por sus siglas en inglés) (Urquiza Muñoz et al., 2021). Así mismo, se demostró que existe un proceso de recuperación a lo largo del tiempo en los bosques del noroeste de la Amazonia (Loreto) después de afectaciones naturales por viento que se midieron mediante series temporales de imágenes de satélite combinado con datos de campo (Urquiza Muñoz et al., 2021).

Para el caso del Jardín Botánico Arboretum – El Huayo, este ha sido estudiado desde múltiples perspectivas, enfocándose en la descripción de las características de la zona, y el inventario y uso de los recursos naturales. Los estudios de

Valderrama (2003) revelan el poco conocimiento en manejo y conservación por parte de los moradores de los pueblos cercanos, lo que se evidencia en el agotamiento de ciertos recursos aprovechados de manera selectiva, dejando a estos bosques con un verdor aparente, pero de poco valor económico y ecológico, lo que se conoce como degradación de bosques (Valderrama-Freyre, 2003). La evolución y dinámicas en el tiempo han sido abarcadas en menor medida y no se encontraron estudios disponibles sobre mediciones de los tributos de la vegetación utilizando imágenes de satélite, sin embargo, se sugiere que la evolución temporal y espacial de la producción de hojarasca son estadísticamente diferentes dentro del "JBAH" (Lopez, 2018).

Es este contexto, el presente trabajo representa una oportunidad importante de crear una metodología de monitoreo y un primer alcance en el estudio de cómo los sensores remotos de alta resolución espacial pueden ser aplicado para observar la evolución y dinámicas temporales de los de bosque del JBAH, además, servirá como base para la experimentación y análisis de otras características o fenómenos que se pueden encontrar en los bosques amazónicos, contribuyendo a su monitoreo previo a los procesos de inventario y otros estudios similares en el departamento de Loreto.

1.2. Bases Teóricas

Sensores remotos

Teledetección se refiere a la ciencia, técnica o, incluso "arte" para algunos, de obtener información (imágenes) de la superficie de nuestro planeta desde la distancia, sin entrar en contacto directo con él. Pero la teledetección también incluye su procesamiento e interpretación (Labrador García et al., 2012).

Los componentes de la teledetección (Figura 2), son los siguientes: (A) Una fuente de radiación, que puede ser de origen natural o artificial; (B) Objetos que interaccionan con la radiación; (C) la atmósfera por la que se desplaza la radiación; y (D) un receptor que recoge la radiación una vez esta ha sido perturbada o emitida por los objetos (Olaya, 2011). El receptor va a generar como producto final una imagen (raster), en cuyas celdas o píxeles se va a contener un valor que indica la

intensidad de la radiación. Estos valores son números enteros que indican el nivel de dicha radiación dentro de una escala definida (habitualmente entre 1 y 256), y se conoce como niveles o números digitales (ND).

Figura 1. Esquema de un sistema de teledetección (Olaya, 2011).

La capacidad de detectar y cuantificar los cambios en los ecosistemas terrestres y su balance global de energía depende del sensor del satélite que provea medidas calibradas y consistentes de las características de la superficie de la tierra (Chander & Markham, 2003).

Sentinel-2 MSI: Multispectral Instrument, Level-2A

Sentinel-2 MSI proporciona datos multiespectrales con alta calidad de imagen radiométrica y geométrica, cuenta con un tiempo de revisión de 5 días, fue lanzado el 23 de junio de 2015, apoya los estudios de Vigilancia Terrestre de Copernicus, incluyendo el seguimiento de la vegetación, el suelo y la cubierta de agua, así como la observación de las vías navegables interiores y las zonas costeras (Drusch et al., 2012). Los datos de este sensor pueden ser de dos niveles: Nivel 1C: Reflectancias de la parte superior de la atmósfera y Nivel 2A: Reflectancias del fondo de la atmósfera.

Consta de 13 bandas espectrales con 3 resoluciones diferentes, cuatro bandas VIS-NIR a 10 m, seis bandas SWIR y de borde rojo a 20 m y tres bandas (aerosol costero, vapor de agua y cirrus) a una resolución espacial de 60 m., y una anchura de barrido de 290km. (ESA, 2017) es una misión de imágenes de alta resolución, que muestra un mejor desempeño y precisión que landsat 8 en cuanto a la cartografía de la cobertura del suelo (Lima et al., 2019).

Nombr e	Tamañ o de pixel	Longitud de onda	Descrip ción	Usos
B2	10 metros	664.5nm	Azul	Sirve para la discriminación de suelos y vegetación.
B4	10 metros	664.5nm	Rojo	Se refleja en el follaje muerto y es útil para identificar tipos de vegetación, suelos y áreas urbanas.
B8	10 metros	835.1nm	Infrarroj o cercano	Sirve para cartografiar las costas y el contenido de biomasa, así como para detectar y analizar la vegetación.

Cuadro 1. Propiedades de bandas y aplicaciones del satélite Sentinel 2A¹ que se usaron en el presente estudio.

Reflectancia espectral

La reflectancia espectral es una característica de las superficies terrestres, algo fundamental en la teledetección. Se define como la proporción de energía incidente que es reflejada por una superficie. Por lo tanto, es una magnitud adimensional que puede tomar valores entre 0 y 1 o porcentajes entre 0 y 100%. Para una determinada superficie este parámetro varía en función de la longitud de onda. Al gráfico de la reflectancia espectral frente a la longitud de onda se le denomina curva de reflectancia espectral o firma espectral. La configuración de estas curvas permite extraer las características espectrales de una superficie y tiene una gran influencia sobre la elección de la región espectral en la cual los datos de teledetección se deben adquirir para una aplicación particular (Labrador García et al., 2012). Así, por ejemplo, las curvas de reflectancia espectral para la vegetación casi siempre manifiestan los picos y valles.

Índice de Vegetación de Diferencia Normalizada (NDVI)

La vegetación tiene un espectro diferente de radiación absorbida y reflejada que la atmósfera, el agua, las nubes o el suelo desnudo. Esto ocurre debido a que la clorofila y los pigmentos captadores de luz asociados o pigmentos accesorios, los

¹ Detalles de las otras bandas pueden encontrarse en: <u>https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR#bands</u>

cuales están concentrados en la superficie del dosel, absorben la luz visible de manera efectiva. Las propiedades ópticas que resultan de la estructura celular de las hojas, sin embargo, las hacen altamente reflectivas al rango Infrarrojo cercano (NIR, por sus siglas en inglés). Los ecologistas han utilizado esta propiedad única de la vegetación para generar un índice de "verdor" de la vegetación, llamado Índice de Vegetación de Diferencia Normalizada (Normalized Difference Vegetation Index - NDVI).

El NDVI, es un índice vegetativo, calculado como la razón entre la reflectancia medida en las regiones de rojo e infrarrojo cercano del espectro electromagnético, esas bandas espectrales son seleccionadas en razón de ser las más afectadas por la absorción de la clorofila por el follaje de la vegetación verde y consecuentemente por la densidad de la vegetación en la superficie (ERDAS, 2010).

Los sitios con mayor tasa de carbono ganado generalmente tienen un alto NDVI porque su alto contenido de clorofila (baja reflectancia en el rango visible) y sus altas áreas de hojas (alta reflectancia en NIR). Diferentes especies con estructura de hojas diferentes también influencia la reflectancia de NIR y por consiguiente el NDVI. Los bosques de conífera por ejemplo generalmente tienen un bajo NDVI que los bosques deciduos a pesar de su gran área foliar (Chapin et al., 2011).

Índice de Vegetación Mejorado (EVI)

El Índice de Vegetación Mejorado fue inventado para corregir simultáneamente los resultados del NDVI en función de las influencias atmosféricas y las señales de fondo del suelo, especialmente en zonas de dosel denso. El rango de valores del EVI es de -1 a 1, y para la vegetación sana varía entre 0,2 y 0,8 (H. Q. Liu & A. Huete, 1995).

El índice de vegetación mejorado (EVI) es un índice de vegetación "óptimo" que desacopla la señal de fondo del dosel y reduce los impactos atmosféricos para mejorar la señal de la vegetación con una mayor sensibilidad en las regiones de alta biomasa y un mejor seguimiento de la vegetación. Aunque el EVI se calcula de la misma manera que el NDVI, tiene en cuenta cierta distorsión de la luz reflejada causada por las partículas del aire y la cubierta del suelo bajo la vegetación. Al examinar las selvas tropicales y otras zonas de la Tierra con altos niveles de

clorofila, el producto de datos EVI no se satura tan rápidamente como el NDVI. (Matsushita et al., 2007).

El EVI es más sensible a los cambios en el dosel de la planta, como el índice de área foliar (LAI), la estructura del dosel, la fenología de la planta y el estrés, que el NDVI, que responde principalmente a la cantidad de clorofila presente (A. Huete et al., 2002).

1.3. Definición de términos básicos

Banda espectral. Es un grupo de archivo de datos para una porción específica del espectro electromagnético definido por dos longitudes de onda (ERDAS, 2010).

Cobertura. Características visibles de la superficie de la tierra en una escena vista desde el espacio, como vegetación, suelo desnudo, pasto, áreas urbanas (ERDAS, 2010).

Metadata. Grupo de archivos que contiene información descriptiva acerca de la escena que provee al usuario datos de fecha de adquisición, ángulos solares, cobertura de nubes, y otras medidas de calidad (NASA, 2010).

Números digitales (ND). Variación en la intensidad del pixel de acuerdo a lo que representa. Es expresada comúnmente en valores del 0 a 255. (ERDAS, 2010).

Pixel. Abreviación de *Picture Element* (Elemento de dibujo), es la parte más pequeña de un dibujo o imagen digital (ERDAS, 2010).

Reflectancia espectral. Es la razón entre la radiación reflejada y el incidente, se le denomina también albedo desde el punto de vista geofísico. Se consideran dos tipos cuando se habla de correcciones atmosféricas, la reflectancia de la cima de la atmósfera (TOA, Top of the atmosphere) y la reflectancia a nivel de superficie. (NASA, 2010).

Análisis de series de tiempo. La TSA por sus siglas en ingles es un término amplio que se refiere a una gran variedad de técnicas para analizar datos ordenados en el tiempo, y su uso prolífico en economía, ingeniería, ciencias de la tierra y otras disciplinas es un indicador natural de su potencial en nuestro campo (Jebb & Tay, 2017).

CAPÍTULO II. HIPOTESIS Y VARIABLES

2.1. Formulación de la hipótesis

Hipótesis general

Los índices de vegetación muestran tendencia negativa a lo largo del tiempo en el bosque del Arboretum El Huayo, en el período 2019 – 2022.

2.2. Variables y su operacionalización

Identificación de variables, indicadores e índices

Las variables utilizadas en el estudio se muestran en la tabla 1.

Tipo de variable	Variable	Definición	Тіро	Indicador es	Unidades de medida	Medios de verificació n
Independie nte	Valores digitales de las imágenes de Satélite	Variable asignada a un píxel, normalmen te.	Cuantitativ o	Reflectanci a	Números digitales	Registro Sentinel 2A (0 a 4000)
Dependien te	Índice de Vegetación de Diferencia Normaliza da (NDVI)	Biomasa fotosintétic amente activa.	Cuantitativ a	Índice de vegetación	Números digitales	Valores normalizad os (-1 a 1)
	Índice de Vegetación Mejorado (EVI)	Vegetación optimizada para altas densidade s de biomasa.	Cuantitativ a	Índice de vegetación	Números digitales	Valores normalizad os (-1 a 1)

Cuadro 2. Variables utilizadas en el estudio.

CAPÍTULO III. METODOLOGÍA

3.1. Tipo y diseño

El estudio es de enfoque cuantitativo, descriptivo y retrospectivo basado en el análisis multitemporal de índices de la vegetación (NDVI y EVI) para conocer la evolución y dinámica del bosque del Jardín Botánico Arboretum "El Huayo" (JBAH) del Centro de Investigación y Enseñanza Forestal de la Facultad de Ciencias Forestales de la Universidad Nacional de la Amazonia Peruana, que se encuentra en un bosque de terraza media, cuya coordenadas UTM 680729 (este), 9576316 (norte), de altitud de 122 metros sobre el nivel del mar (msnm), que políticamente está ubicada en la provincia de Maynas, distrito de San Juan Bautista, departamento de Loreto (Ver Anexo 1).

3.2. Diseño muestral

Población de estudio

Datos de índices de vegetación (NDVI Y EVI) calculados a partir de imágenes Sentinel 2A para el periodo 2019-2022.

Tamaño de la población de estudio

La población estuvo conformada por todos los pixeles que contienen estimaciones de índices de vegetación (NDVI Y EVI) para el periodo 2019-2022 en el JBAH (18 hectáreas).

3.3. Procedimientos de recolección de datos

Para la recolección de datos, se utilizó la técnica documental, debido a que los valores de reflectancia espectral fueron obtenidos a partir de una colección de imágenes dentro de Google Earth Engine (GEE) denominada: *"Sentinel-2 MSI: MultiSpectral Instrument, Level-2A", disponible en:* https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S2_SR_HARMONIZED

La base de datos de las imágenes de satélite obtenidas, fueron administradas y procesadas en la plataforma geo-espacial Google Earth Engine (GEE). Google Earth Engine es una plataforma basada en la nube para el análisis geoespacial a

escala planetaria que aporta las enormes capacidades computacionales de Google a una serie de problemas sociales de gran impacto, como la deforestación, la sequía, las catástrofes, las enfermedades, la seguridad alimentaria, la gestión del agua, la vigilancia del clima y la protección del medio ambiente. Se trata de una plataforma integrada única en su género, diseñada para capacitar no sólo a los científicos tradicionales de la teledetección, sino también a un público mucho más amplio que carece de la capacidad técnica necesaria para utilizar los superordenadores tradicionales o los recursos de computación en la nube a gran escala (Gorelick et al., 2017).

3.4. Procesamiento y análisis de los datos

Enmascaramiento de nubes en las imágenes

Las nubes en las imágenes de satélite, producen anomalías en la detección de índices de vegetación. Las imágenes de Sentinel 2 no disponen de una banda térmica que ayude a detectar las nubes; sin embargo, la nueva banda de cirros (QA60) resulta útil para detectarlas, especialmente en el caso de cirros finos. Sentinel 2 consigue resultados significativamente mejores que los sensores de los satélites Landsats 4-7. Es por esto que, para el enmascaramiento de nubes, se utilizó el algoritmo FMASK (Zhu et al., 2015), a partir de la selección de los bits 10 y 11 de la banda QA60 de Sentinel 2A.

Estimación de índices de vegetación

Las imágenes de satélite fueron procesados en la plataforma GEE donde se aplicó las siguientes ecuaciones para NDVI (Huete et al. in 2002) y EVI (Seller; 1985):

$$NDVI = (B8 - B4) / (B8 + B4)$$

Donde: NIR: Infrarrojo cercano (banda8) y Red Rojo (banda 4)

$$EVI = 2.5 * ((B8 - B4) / (B8 + 6.0 * B4 - 7.5 * B2 + 1.0))$$

Donde: Infrarrojo cercano (banda 8), Rojo (banda 4) y Azul (banda2)

La calidad de los datos de NDVI y EVI fueron estimados y extraídos basados en los centroides de cada pixel dentro de área del Arboretum, comprobando sus valores para evitar el uso de datos erróneos o atípicos en el desarrollo y resultado final.

Posteriormente los datos se organizaron cronológicamente realizando las conversiones de unidades respectivas y se catalogó las observaciones de acuerdo a la figura 1.

Figura 2. Interpretación de valores de los Índices de Vegetación. Adaptación de EOS Data Analitics.

Sistematización de la información y análisis estadísticos

Para la sistematización y análisis estadísticos de los datos se utilizaron los programas R Studio versión 2022.07. 1+554. Este mismo software fue usado para la generación de los gráficos, mapas y análisis estadísticos. Debido a la gran cantidad de datos utilizamos diagramas de caja (boxplot) describiendo los datos del cuartil 1 (Q1) y los datos del cuartil 3 (Q3). Es por esta misma razón (grandes cantidades de datos), que se aplicó prueba de Kolmogorov-Smirnov para demostrar que los datos no siguen una distribución normal, y las comparaciones de medias se hicieron siguiendo estándares y pruebas de estadísticas no paramétricas.

Las tendencias de series temporales se estimaron con la prueba del patrón de Mann-Kendall que se utiliza para detectar si los datos de series temporales tienen o no una tendencia. Es una prueba no paramétrica, lo que significa que no hay ningún supuesto subyacente sobre la normalidad de los datos.

CAPÍTULO IV. RESULTADOS

4.1. Imágenes analizadas y set de datos.

Se evaluaron un total de 294 imágenes Sentinel 2A (ver Anexo 2) distribuido de manera casi uniforme para todos los meses y años (Fig. 2), para el 100% del área. Estas imágenes se trataron con enmascaramiento de nubes para evitar datos anómalos en el Arboretum El Huayo, en el período 2019 – 2022.

En total se obtuvieron 2021 centroides de todos los pixeles dentro del área del Arboretum (incluyendo algunos pixeles extra en los bordes). Cada pixel tiene un área de 0.01 hectáreas que multiplicado por el total de centroides da como resultado 20.21 hectáreas evaluadas. Las interacciones entre los centroides (2021 puntos) con el número de imágenes enmascaradas de nubes (150 en 4 años) y el número de índices analizados (2), nos da como resultado total 606,300 observaciones.

4.2. Dinámica temporal de los índices en el bosque del Arboretum El Huayoperíodo 2019-2022 a escala anual.

4.2.1 Dinámica anual del NDVI.

La dinámica temporal muestra una media de 0.61 (línea roja entrecortada en la Fig. 2a) para todo el periodo de análisis (2019-2022). Sin embargo, la media para los años previos al 2022 es mayor con 0.69 (línea azul entrecortada en la Fig. 2a). Esto se interpreta como un cambio de vegetación muy saludable (>0.66) a vegetación moderadamente saludable (0.33 a 0.66).

Los boxplot muestran que para el año 2019 (bloxplot rojo en la fig. 2a) la mediana fue de 0.7 (Q1=0.51 y Q3=0.83), para el año 2020 (bloxplot verde en la fig. 2a) la mediana fue de 0.84 (Q1=0.74 y Q3=0.86),), para el año 2021 (bloxplot celeste en la fig. 2a) la mediana fue de 0.7 (Q1=0.49 y Q3=0.82),), y para el año 2022 (bloxplot morado en la fig. 2a) la mediana fue de 0.28 (Q1=0.2 y Q3=0.48). Estos resultados, muestran una disminución abrupta en el índice de vegetación para el último año.

4.2.2 Dinámica anual del EVI.

La dinámica temporal anual del EVI muestra una media de 0.49 (línea roja entrecortada en la Fig. 2b) para todo el periodo de análisis (2019-2022). Sin embargo, la media para los años previos al 2022 es ligeramente mayor con 0.52 (línea azul entrecortada en la Fig. 2b). Este resultado indica una disminución y confirma lo demostrado por el análisis de NDVI, aunque la diferencia aquí es menor en comparación con el mismo.

La distribución de datos por boxplot muestran que para el año 2019 (bloxplot rojo en la fig. 2b) la mediana fue de 0.63 (Q1=0.48 y Q3=0.71), para el año 2020 (bloxplot verde en la fig. 2b) la mediana fue de 0.64 (Q1=0. 58 y Q3=0. 71), para el año 2021 (bloxplot celeste en la fig. 2b) la mediana fue de 0.6 (Q1=0.49 y Q3=0.7), y para el año 2022 (bloxplot morado en la fig. 2b) la mediana fue de 0.36 (Q1=0.2 y Q3=0.59). Mostrando también una disminución de los valores para el último año.

Figura 4. Dinámica temporal de los valores de Índices para cada año, a) NDVI y b) EVI. La línea roja entre cortada muestra el promedio del índice tomando en cuenta todos los años. La línea entrecortada azul muestra el promedio del índice antes del 2022

Según el test de normalidad de Kolmogorov-Smirnov, se verifico que los datos no siguen una distribución normal (*valor* p < 0.05). El estadístico de Tendencia de Mann-Kendalles estimo tau = -0.18, y el valor p de dos caras asociado a él es inferior a 0,05 (*2-sided pvalue* = 0.001). Podemos concluir que existe tendencia negativo en los datos porque el valor p es menor que 0,05. Esta tendencia queda explicada con un modelo lineal ajustado a la serie de tiempo (figura 4). Aunque el coeficiente de correlación R² no es alto para ambos índices, podemos ver que p<0.05 y que la pendiente del modelo es negativa, lo que quiere decir que cuando

"X" aumenta en 1, "Y" disminuye en 0.000145 (EVI) y 0.000165 (NDVI). Con estos valores podemos estimar que para ambos índices hay una disminución anual de ~0.05 (e.g. 0.000145*365 dias).

Figura 5. Análisis de tendencia temporal (días evaluados) de los índices de vegetación. La línea Azul representa el modelo lineal y el área gris sombreada representa el Intervalo de confianza (CI=95%).

4.2. Estado de conservación del Arboretum el Huayo.

Teniendo en cuenta la dispersión en la sensibilidad de NDVI para determinar el estado de la vegetación, se optó usar solo el EVI para determinar el estado de conservación de cada una de las parcelas del Arboretum el Huayo.

El estado de conservación basado en la mediana del EVI distribuido espacialmente (Fig. 6 a.1), muestra de todos pixeles en el área de estudio tiene valores por encima de 0.4 (vegetación moderadamente saludable) para todas las parcelas del Arboretum el Huayo. Sin embargo, aunque la vegetación esta moderadamente saludable, la distribución de los datos en función al tiempo, muestra que el último año (2022) tiene los valores más bajos (boxplots morados en la figura 6b). Esta tendencia decreciente a lo largo del tiempo en los valores de EVI puede indicar una

un decaimiento en el estado de conservación. Esto puede ser el resultado de pocos/nulos esfuerzos de restauración o protección que están alterando a la vegetación.

La estabilidad en los valores de EVI (Figura 6 a.2) a lo largo del tiempo sugiere un estado de conservación poco constantes (0.15 a 0.3), indica una vegetación poco estable o bastante dinámica. La figura 6 b muestra anomalías (outliers altos y bajos) de EVI, estas anomalías indican problemas en el estado de conservación. Esto puede estar relacionado con la degradación de la vegetación debido a actividades humanas, cambios en el uso del suelo, eventos climáticos extremos u otros factores negativos.

Figura 6. Estado de conservación del Arboretum el Huayo

CAPÍTULO V. DISCUSIÓN

5.1. Índices de vegetación para el monitoreo de bosques

El presente estudio presenta una línea base para el monitoreo satelital de la vegetación del Arboretum el Huayo a pesar que desde hace casi 50 años se lanzó el primer satélite diseñado específicamente para la recolección de datos de teledetección multiespectral para el análisis y monitoreo de los recursos forestales (Boyd & Danson, 2005) esto permitió que se realizaran muchas investigaciones para determinar el estado de los bosques en el mundo. En las últimas décadas, se han desarrollado técnicas de detección de cambios en los números digitales de cada pixel en las imágenes satelitales (Coppin & Bauer, 1996; Lu et al., 2004), a partir de esto, se han desarrollado enfogues de series de tiempo (como este estudio) para el monitoreo de la dinámica de la vegetación (Huang et al., 2010) que se han ido expandiendo rápidamente gracias a las políticas de datos abiertos de las imágenes de resolución media como Landsat y Sentinel-1 y 2 (Banskota et al., 2014). Por otro lado, las imágenes de alta resolución espacial y poca resolución espectral no aportan los mismos beneficios que las imágenes de media y baja resolución espacial (Borotkanych, 2023), que normalmente son multiespectrales. Las mejoras en la adquisición de imágenes como Sentinel 2A reúnen las dos características valiosas para el monitoreo (resolución espacial y espectral) que permiten ser confidentes de los resultados mostrados en el presente estudio.

Para el caso específico de las imágenes de Satélite Sentinel 2A, la resolución espacial está disponible en el rango de 10 a 20 metros por píxel, lo cual permite tener una mejor perspectiva del bosque del Arboretum el Huayo, en comparación con otros Satélites de libre acceso que tienen 30 metros por pixel (como la constelación Landsat). Además, la resolución espectral permite analizar y explorar en detalle diversos índices de vegetación, que constituyen una forma efectiva de mapear los bosques, evaluar la salud y monitorear la vegetación de manera oportuna y consistente (Boyd & Danson, 2005). De los diversos requisitos de preprocesamiento para la detección de cambios, los más importantes son el registro de imágenes multitemporales y las correcciones radiométricas y atmosféricas (Lu et al., 2004), si bien las series temporales pueden ayudar a realizar un mapeo más

preciso de las áreas afectadas por la degradación a lo largo del tiempo, no necesariamente brindan todos los datos necesarios para estimar las emisiones.

Uno de los métodos más usados para monitoreo de bosques son los Indices de Vegetación, debido a que presentan beneficios como el ser computacionalmente simple, lo que también facilita el análisis de tipo exploratorio y al ser generalmente menos sitio-específico son más universalmente aplicables que otros métodos (Frampton et al., 2013). Los índices de vegetación son variables de uso común en el análisis de series de tiempo para la perturbación o regeneración de la vegetación (DeVries et al., 2015). El análisis de series temporales para evaluar la evolución de la vegetación se muestra con un enfoque prometedor (Gao et al., 2020), sin embargo, existen diferentes limitaciones con respecto al uso de imágenes satelitales, como la prevalencia de nubes en estación húmeda (Fuller, 2006), los aerosoles en estación seca, y las trayectorias anuales del ángulo del sol, lo que puede llegar a confundir o sesgar la interpretación de los datos de las series temporales satelitales (A. R. Huete, 2012). Es por ello que, para el monitoreo de la vegetación usando Sensores Remotos existen diversos métodos según el tipo de perturbaciones, el tipo de bosque y los datos disponibles (Miettinen et al., 2014).

Al no tener precedentes de estudios aplicando índices de vegetación sobre el Arboretum el Huayo, se tuvo que comparar los resultados usando NDVI y EVI, que son de los más destacados y de fácil aplicación. El NDVI y el EVI son índices adimensionales, y sus valores van de -1 a +1 (Girimonte & Garcia Fronti, 2020). Las zonas de roca estéril, cuerpos de agua, arena o nieve suelen mostrar valores de NDVI muy bajos (por ejemplo, 0.1 o menos) (Pettorelli et al., 2005). La vegetación escasa, como los arbustos y los pastizales, bosques degradados o los cultivos senescentes pueden dar lugar a valores de índices moderados (aproximadamente de 0.3 a 0.6). Los valores altos de índices de vegetación (aproximadamente de 0.6 a 0.9) corresponden a una vegetación densa como la que se encuentra en los bosques tropicales o en los cultivos en su fase de máximo crecimiento (Meneses-Tovar, s. f.; Zaitunah et al., 2018). El arboretum el Huayo en comparación a los antecedentes, muestran que el estado de vegetación es moderadamente saludable pero que poco a poco se están degradando hacia valores más bajos en el último año. En nuestro resultado, las diferencias entre el EVI y el NDVI son notables teniendo en cuenta la distribución de los datos en los cuartiles con respecto a la media, aun así, ambos índices muestran un descenso en los valores para el año 2022. Sin embargo, el NDVI es propenso a errores cuando la densidad de biomasa es muy alta o cuando la vegetación presenta una densidad moderada y alta, este se muestra insensible (Viña, 2004), como en los bosques tropicales, o cuando hay una gran influencia de suelos muy expuesto, debido a esto es que se desarrolló el EVI como un algoritmo que calcula de manera similar, pero con la diferencia de que adiciona otros componentes, como el factor de ganancia, el factor de ajuste del suelo, y pesos de resistencia a los aerosoles (A. Huete et al., 2002), lo que corrige algunas distorsiones de la luz reflejada causadas por algunas partículas en el aire, así como la cubierta del suelo debajo de la vegetación, por lo tanto, el EVI responde mejor ante bosques con vegetación diversa (Zoungrana et al., 2014) como el caso del Arboretum.

5.2. Dinámicas del bosque del Arboretum el huayo

Los resultados de este estudio está sujeto a las variaciones fenológicas que existen en el bosque de terraza media del Jardín Botánico "El Huayo", demuestra que el índice de dominancia de Simpson varía entre 0,014 a 0,023 (Arellano, 2019) lo que indica que la probabilidad de que dos individuos, dentro de una misma parcela pertenezcan a la misma especie es muy bajo, por lo que el bosque presenta una alta diversidad, y esto se debe a que a nivel de especies no se mantiene estable, es dinámico, y también porque presenta características propias de un bosque con perturbaciones naturales (Arellano, 2019; Rojas, 2018). Estas variaciones explicarían la dispersión de datos para cada parcela y la aparición de valores extremos en la figura 6 b. de este estudio.

La regeneración natural es el proceso ecológico más importante para la recuperación de la composición florística y estructura. En el arboretum existen reportes de que la regeneración natural de buena calidad representa el 71.54% del total de regeneración (Rodriguez, 2003) y que los latizales y brinzales son los que cuentan con mayor stock de plantas que compiten por los recursos para posicionarse en el bosque, mientras que las clases superiores mostraron una

mortalidad mayor al reclutamiento, lo que indica que la mortalidad y reclutamiento por clase diamétrica del área de estudio es de tipo exponencial negativo (Arellano, 2019). Lo que podría estar explicando la tendencia a mostrar valores más bajos en los índices de vegetación en los últimos años. Adicionalmente, el Arboretum (bosque de terraza media), está compuesto en su mayoría por individuos jóvenes con escasos árboles que han alcanzado su madurez, esto se debe principalmente a la extracción irracional de madera para leña y a una lenta recuperación del bosque, la existencia de parches y corredores existentes en su interior han llevado a la conclusión de que el área de investigación está altamente degradada (Torres, 2015).

Así mismo, existen evidencia científica de que las anomalías climáticas afectan severamente a la biodiversidad en diferentes formas y escalas (Morueta-Holme et al., 2015), degrada el hábitat y modifica el paisaje (Evangelista et al., 2016). Sin embargo, el presente estudio cuenta con un periodo corto de evaluación para incluir el contexto climático, debido a que el satélite Sentinel 2A nos proporciona información desde el 2019. Sin embargo, este estudio podría llegar a determinar el comportamiento del Arboretum a través de los años posteriores a nuestra evaluación, y evaluar los posibles cambios interanuales en el Arboretum.

Es importante tener en cuenta que el estado de conservación no puede determinarse únicamente basándose en el índice de vegetación, ya que existen otros factores y variables que deben considerarse en una evaluación completa. Los índices de vegetación son herramientas útiles para monitorear la salud y vitalidad de la vegetación, pero se recomienda complementarlo con información adicional, como estudios de campo, análisis de datos socioeconómicos y conocimiento local para una evaluación integral del estado de conservación.

21

CAPÍTULO VI. CONCLUSIONES

- Estos resultados respaldan la hipótesis ya que El Arboretum el Huayo muestra una tendencia estadísticamente significativa a la baja en los valores de índice de vegetación (~.05 al año para ambos índices).
- El EVI mostró menos dispersión de datos en comparación al NDVI, lo que nos lleva a concluir que el EVI es una mejor alternativa para el monitoreo de la vegetación.
- El arboretum muestra un EVI con una media de 0.53 indicando que, en promedio, la vegetación en el área estudiada tiene una presencia y salud moderadamente buena, pero que está decayendo con el tiempo.

CAPÍTULO VII. RECOMENDACIONES

- Se sugiere continuar con la investigación teniendo la presente metodología y resultados como línea base para ser aplicado a los próximos años, con el fin de entender con mayor detalle las dinámicas temporales en el Arboretum el Huayo.
- Complementar la investigación con datos temporales de factores antropogénicos, climáticos, entre otros, para determinar las causas de los resultados obtenidos y así poder brindar posibles alternativas de solución y/o adaptación.

CAPÍTULO VIII. FUENTES DE INFORMACIÓN

- Arellano, J. (2019). DINAMISMO DEL BOSQUE DEL ARBORETO "EL HUAYO" DEL CENTRO DE INVESTIGACIÓN Y ENSEÑANZA FORESTAL (CIEFOR), IQUITOS, PERÚ, PERIODO 2000 – 2018.
- Banskota, A., Kayastha, N., Falkowski, M. J., Wulder, M. A., Froese, R. E., &
 White, J. C. (2014). Forest Monitoring Using Landsat Time Series Data: A
 Review. Canadian Journal of Remote Sensing, 40(5), 362-384.
 https://doi.org/10.1080/07038992.2014.987376
- Borotkanych, N. (2023, otoño). ¿Qué Es La Resolución Espacial En Una Imagen Satelital? EOS DATA ANALYTICS. https://eos.com/es/blog/resolucionespacial/#:~:text=La%20mejor%20resoluci%C3%B3n%20espacial%20provi ene,aparecer%C3%A1%20como%20un%20peque%C3%B1o%20punto
- Boyd, D. S., & Danson, F. M. (2005). Satellite remote sensing of forest resources:
 Three decades of research development. Progress in Physical Geography,
 1-26. https://doi.org/10.1191/0309133305pp432ra
- Broich, M., Hansen, M., Stolle, F., Potapov, P., Margono, B. A., & Adusei, B.
 (2011). Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000–2008.
 Environmental Research Letters, 6(1), 014010.
 https://doi.org/10.1088/1748-9326/6/1/014010
- Chander, G., & Markham, B. (2003). Revised landsat-5 tm radiometric calibration procedures and postcalibration dynamic ranges. IEEE Transactions on Geoscience and Remote Sensing, 41(11), 2674-2677. https://doi.org/10.1109/TGRS.2003.818464

- Chapin, F. S., Matson, P. A., & Vitousek, P. M. (2011). Principles of terrestrial ecosystem ecology (2nd ed). Springer.
- Coppin, P. R., & Bauer, M. E. (1996). Digital change detection in forest ecosystems with remote sensing imagery. Remote Sensing Reviews, 13(3-4), 207-234. https://doi.org/10.1080/02757259609532305
- DeVries, B., Decuyper, M., Verbesselt, J., Zeileis, A., Herold, M., & Joseph, S. (2015). Tracking disturbance-regrowth dynamics in tropical forests using structural change detection and Landsat time series. Remote Sensing of Environment, 169, 320-334. https://doi.org/10.1016/j.rse.2015.08.020
- Drusch, M., Bello, U. D., Carlier, S., Colin, O., Fernandez, V., Gascon, F.,
 Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F.,
 Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA's Optical
 High-Resolution Mission for GMES Operational Services. Remote Sensing
 of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026
- ERDAS. (2010). Field Guide.
- ESA. (2017). Sen2Cor Configuration and User Manual.
- Evangelista, R. J., Cruz, A. C., & Lasco, R. (2016). Knowledge, Attitude and Practice of Smallholder Farmers Regarding Climate Change and Agroforestry: A Case Study of Farmers in Peñablanca, Cagayan. Journal of Environmental Science and Management, 42-55. https://doi.org/10.47125/jesam/2016_sp1/04
- Feng, M., Sexton, J. O., Huang, C., Masek, J. G., Vermote, E. F., Gao, F.,Narasimhan, R., Channan, S., Wolfe, R. E., & Townshend, J. R. (2013).Global surface reflectance products from Landsat: Assessment using

coincident MODIS observations. Remote Sensing of Environment, 134, 276-293. https://doi.org/10.1016/j.rse.2013.02.031

- Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and Remote Sensing, 82, 83-92. https://doi.org/10.1016/j.isprsjprs.2013.04.007
- Fuller, D. O. (2006). Tropical forest monitoring and remote sensing: A new era of transparency in forest governance? Singapore Journal of Tropical Geography, 27(1), 15-29. https://doi.org/10.1111/j.1467-9493.2006.00237.x
- Gao, Y., Skutsch, M., Paneque-Gálvez, J., & Ghilardi, A. (2020). Remote sensing of forest degradation: A review. Environmental Research Letters, 15(10), 103001. https://doi.org/10.1088/1748-9326/abaad7
- Girimonte, P., & Garcia Fronti, J. (2020, agosto 15). EL INDICE NDVI Y LA CLASIFICACIÓN DE ÁREAS SEMBRADAS APRENDIZAJE AUTOMÁTICO NO SUPERVISADO "K-MEANS". 1, 39-52.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R.
(2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. https://doi.org/10.1016/j.rse.2017.06.031

- H. Q. Liu & A. Huete. (1995). A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Transactions on Geoscience and Remote Sensing, 33(2), 457-465. https://doi.org/10.1109/TGRS.1995.8746027
- Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., & Lotsch, A. (2012). Baseline Map of 26

Carbon Emissions from Deforestation in Tropical Regions. Science,

336(6088), 1573-1576. https://doi.org/10.1126/science.1217962

- Huang, C., Goward, S. N., Masek, J. G., Thomas, N., Zhu, Z., & Vogelmann, J. E.
 (2010). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment, 114(1), 183-198. https://doi.org/10.1016/j.rse.2009.08.017
- Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002).
 Overview of the radiometric and biophysical performance of the MODIS vegetation indices. The Moderate Resolution Imaging Spectroradiometer (MODIS): a new generation of Land Surface Monitoring, 83(1), 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2
- Huete, A. R. (2012). Vegetation Indices, Remote Sensing and Forest Monitoring:
 Vegetation indices and forest monitoring. Geography Compass, 6(9), 513532. https://doi.org/10.1111/j.1749-8198.2012.00507.x

Jebb, A. T., & Tay, L. (2017). Introduction to Time Series Analysis for
Organizational Research: Methods for Longitudinal Analyses.
Organizational Research Methods, 20(1), 61-94.
https://doi.org/10.1177/1094428116668035

- Labrador García, M., Évora Brondo, J. A., & Arbelo Péres, M. (2012). Satélites de Teledetección para la Gestión del Territorio.
- Lima, T. A., Beuchle, R., Langner, A., Grecchi, R. C., Griess, V. C., & Achard, F. (2019). Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sensing, 11(8), 961. https://doi.org/10.3390/rs11080961

- Lopez, F. (2018). Producción de hojarasca en el Jardín Botánico Arboretum "El Huayo", Loreto, Perú, 2015. UNAP.
- Lu, D., Mausel, P., Brondízio, E., & Moran, E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 2365-2401. https://doi.org/10.1080/0143116031000139863
- Matsushita, B., Yang, W., Chen, J., Onda, Y., & Qiu, G. (2007). Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation
 Index (NDVI) to Topographic Effects: A Case Study in High-density Cypress
 Forest. Sensors, 7(11), 2636-2651. https://doi.org/10.3390/s7112636

Meneses-Tovar, C. L. (s. f.). NDVI as indicator of degradation. 62.

Miettinen, J., Stibig, H.-J., & Achard, F. (2014). Remote sensing of forest degradation in Southeast Asia—Aiming for a regional view through 5–30 m satellite data. Global Ecology and Conservation, 2, 24-36. https://doi.org/10.1016/j.gecco.2014.07.007

Morueta-Holme, N., Engemann, K., Sandoval-Acuña, P., Jonas, J. D., Segnitz, R.
M., & Svenning, J.-C. (2015). Strong upslope shifts in Chimborazo's vegetation over two centuries since Humboldt. Proceedings of the National Academy of Sciences, 112(41), 12741-12745.
https://doi.org/10.1073/pnas.1509938112

NASA. (2010). Landsat 7 Handbook.

Olaya, V. (2011). Sistemas de Información Geográfica. 911.

Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. Chr. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503-510. https://doi.org/10.1016/j.tree.2005.05.011 Rodriguez, C. (2003). CARACTERIZACIÓN DE LA REGENERACIÓN NATURAL

DE ESPECIES FORESTALES DEL ARBORETUM «EL HUAYO» DEL

CIERFOR - PUERTO ALMENDRA, RÍO NANAY.

Rojas, R. (2018). DINÁMICA EN LA BIOMETRÍA Y EL SECUESTRO DE CARBONO DE UN BOSQUE APROVECHADO DEL CIEFOR – PUERTO ALMENDRA. LORETO – PERÚ, 2016.

Torres, L. (2015). DETERMINACIÓN DEL GRADO DE DEGRADACIÓN DEL BOSQUE DE TERRAZA MEDIA DEL ARBORETUM "EL HUAYO", LORETO – PERU.

Urquiza Muñoz, J. D., Magnabosco Marra, D., Negrón-Juarez, R. I., Tello-Espinoza, R., Alegría-Muñoz, W., Pacheco-Gómez, T., Rifai, S. W., Chambers, J. Q., Jenkins, H. S., Brenning, A., & Trumbore, S. E. (2021). Recovery of Forest Structure Following Large-Scale Windthrows in the Northwestern Amazon. Forests, 12(6), 667. https://doi.org/10.3390/f12060667

Valderrama-Freyre, H. (2003). PLANTAS DE IMPORTANCIA ECONÓMICA Y

ECOLÓGICA EN EL JARDÍN BOTÁNICO - ARBORETUM EL HUAYO,

IQUITOS, PERÚ. Folia Amazónica, 14(1), 159.

https://doi.org/10.24841/fa.v14i1.165

Vargas Gonzáles. (2014). MAPEO DE PÉRDIDA DE BOSQUES HÚMEDOS AMAZÓNICOS DEL PERÚENTRE LOS AÑOS 2000 AL 2011 UTILIZANDO METRICASMULTITEMPORALES DERIVADAS DE DATOS LANDSAT ETM+.

- Viña, A. (2004). Satellite monitoring of vegetation dynamics: Sensitivity enhancement by the wide dynamic range vegetation index. Geophysical Research Letters, 31(4), L04503. https://doi.org/10.1029/2003GL019034
- WMO. (2018). Guide to climatological practices (2011 ed). World Meteorological Organization.
- Zaitunah, A., Samsuri, Ahmad, A. G., & Safitri, R. A. (2018). Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia. IOP Conference Series: Earth and Environmental Science, 126, 012112. https://doi.org/10.1088/1755-1315/126/1/012112
- Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4– 7, 8, and Sentinel 2 images. 159, 269-277. https://doi.org/10.1016/j.rse.2014.12.014
- Zoungrana, B., Conrad, C., Amekudzi, L., Thiel, M., & Da, E. (2014). Land Use/Cover Response to Rainfall Variability: A Comparing Analysis between NDVI and EVI in the Southwest of Burkina Faso. Climate, 3(1), 63-77. https://doi.org/10.3390/cli3010063

ANEXOS

Anexo1. Mapa de ubicación

Figura 7. Mapa de ubicación Arboretum El Huayo

N	Código de escena
1	20181217T151659_20181217T152024_T18MXA
2	20181222T151701_20181222T151656_T18MXA
3	20181227T151659_20181227T151707_T18MXA
4	20190101T151701_20190101T151658_T18MXA
5	20190106T151659_20190106T151702_T18MXA
6	20190111T151701_20190111T151659_T18MXA
7	20190116T151709_20190116T152029_T18MXA
8	20190121T151701_20190121T151700_T18MXA
9	20190126T151709_20190126T151946_T18MXA
10	20190131T151701_20190131T151701_T18MXA
11	20190205T151709_20190205T152124_T18MXA
12	20190210T151701_20190210T152316_T18MXA
13	20190215T151709_20190215T152351_T18MXA
14	20190220T151701_20190220T152217_T18MXA
15	20190225T151659_20190225T151702_T18MXA
16	20190302T151701_20190302T152249_T18MXA
17	20190307T151659_20190307T152331_T18MXA
18	20190312T151701_20190312T152039_T18MXA
19	20190317T151659_20190317T151944_T18MXA
20	20190322T151701_20190322T151702_T18MXA
21	20190327T151709_20190327T152150_T18MXA
22	20190401T151701_20190401T151805_T18MXA
23	20190406T151709_20190406T151801_T18MXA
24	20190411T151711_20190411T152328_T18MXA
25	20190416T151709_20190416T151709_T18MXA
26	20190421T151711_20190421T151707_T18MXA
27	20190426T151709_20190426T151711_T18MXA
28	20190501T151711_20190501T151806_T18MXA
29	20190506T151709_20190506T152222_T18MXA
30	20190511T151711_20190511T152359_T18MXA
31	20190516T151709_20190516T152114_T18MXA
32	20190521T151711_20190521T151707_T18MXA
33	20190526T151709_20190526T151712_T18MXA
34	20190531T151711_20190531T151804_T18MXA
35	20190605T151709_20190605T151911_T18MXA
36	20190610T151711_20190610T151847_T18MXA
37	20190615T151709_20190615T152011_T18MXA
38	20190620T151711_20190620T151730_T18MXA

Anexo2. Listado de imágenes usadas

Ν	Código de escena
39	20190625T151709_20190625T152244_T18MXA
40	20190630T151711_20190630T151846_T18MXA
41	20190705T151709_20190705T151712_T18MXA
42	20190710T151711_20190710T151846_T18MXA
43	20190715T151709_20190715T151712_T18MXA
44	20190720T151711_20190720T151709_T18MXA
45	20190725T151709_20190725T151712_T18MXA
46	20190730T151711_20190730T151807_T18MXA
47	20190804T151709_20190804T151711_T18MXA
48	20190809T151711_20190809T151806_T18MXA
49	20190814T151709_20190814T151710_T18MXA
50	20190819T151711_20190819T151812_T18MXA
51	20190824T151709_20190824T151708_T18MXA
52	20190829T151711_20190829T152353_T18MXA
53	20190903T151709_20190903T152220_T18MXA
54	20190908T151701_20190908T151801_T18MXA
55	20190913T151709_20190913T152341_T18MXA
56	20190918T151701_20190918T151704_T18MXA
57	20190923T151709_20190923T151819_T18MXA
58	20190928T151711_20190928T151940_T18MXA
59	20191003T151709_20191003T152153_T18MXA
60	20191008T151711_20191008T152046_T18MXA
61	20191013T151709_20191013T151705_T18MXA
62	20191018T151711_20191018T151707_T18MXA
63	20191023T151709_20191023T151705_T18MXA
64	20191028T151711_20191028T152253_T18MXA
65	20191102T151709_20191102T151711_T18MXA
66	20191107T151711_20191107T152351_T18MXA
67	20191112T151709_20191112T151801_T18MXA
68	20191117T151711_20191117T151705_T18MXA
69	20191122T151659_20191122T151842_T18MXA
70	20191127T151701_20191127T151704_T18MXA
71	20191202T151659_20191202T151911_T18MXA
72	20191207T151701_20191207T151701_T18MXA
73	20191212T151659_20191212T151658_T18MXA
74	20191217T151701_20191217T151658_T18MXA
75	20191222T151659_20191222T151941_T18MXA
76	20191227T151701_20191227T151658_T18MXA

N	Código de escena
77	20200101T151659_20200101T151930_T18MXA
78	20200106T151701_20200106T151658_T18MXA
79	20200111T151659_20200111T151911_T18MXA
80	20200116T151701_20200116T152038_T18MXA
81	20200121T151659_20200121T151657_T18MXA
82	20200126T151701_20200126T152012_T18MXA
83	20200131T151659_20200131T151656_T18MXA
84	20200205T151701_20200205T151919_T18MXA
85	20200210T151659_20200210T151658_T18MXA
86	20200215T151701_20200215T152236_T18MXA
87	20200220T151659_20200220T152051_T18MXA
88	20200225T151701_20200225T152133_T18MXA
89	20200301T151659_20200301T151701_T18MXA
90	20200306T151701_20200306T152018_T18MXA
91	20200311T151659_20200311T152350_T18MXA
92	20200316T151701_20200316T151812_T18MXA
93	20200321T151659_20200321T152227_T18MXA
94	20200326T151701_20200326T151750_T18MXA
95	20200331T151659_20200331T151701_T18MXA
96	20200405T151701_20200405T151744_T18MXA
97	20200410T151659_20200410T151700_T18MXA
98	20200415T151701_20200415T151703_T18MXA
99	20200420T151659_20200420T151727_T18MXA
100	20200425T151711_20200425T151731_T18MXA
101	20200430T151659_20200430T151700_T18MXA
102	20200505T151711_20200505T151755_T18MXA
103	20200510T151659_20200510T151702_T18MXA
104	20200515T151711_20200515T152143_T18MXA
105	20200520T151709_20200520T151704_T18MXA
106	20200525T151711_20200525T151826_T18MXA
107	20200530T151709_20200530T151705_T18MXA
108	20200604T151711_20200604T151847_T18MXA
109	20200609T151709_20200609T151945_T18MXA
110	20200614T151711_20200614T152018_T18MXA
111	20200619T151709_20200619T151919_T18MXA
112	20200624T151711_20200624T151850_T18MXA
113	20200629T151709_20200629T152119_T18MXA
114	20200704T151711_20200704T151850_T18MXA
115	20200709T151709_20200709T151705_T18MXA
116	20200714T151711_20200714T151708_T18MXA
	1

N	Código de escena
117	20200719T151709_20200719T151705_T18MXA
118	20200724T151711_20200724T151814_T18MXA
119	20200729T151709_20200729T151927_T18MXA
120	20200803T151711_20200803T151800_T18MXA
121	20200808T151709_20200808T152329_T18MXA
122	20200813T151711_20200813T151800_T18MXA
123	20200818T151709_20200818T151707_T18MXA
124	20200823T151711_20200823T151814_T18MXA
125	20200828T151709_20200828T152025_T18MXA
126	20200902T151711_20200902T151709_T18MXA
127	20200907T151709_20200907T152155_T18MXA
128	20200912T151711_20200912T151708_T18MXA
129	20200917T151709_20200917T151745_T18MXA
130	20200922T151711_20200922T151709_T18MXA
131	20200927T151709_20200927T151805_T18MXA
132	20201002T151711_20201002T151847_T18MXA
133	20201007T151709_20201007T152040_T18MXA
134	20201012T151711_20201012T152202_T18MXA
135	20201017T151709_20201017T152337_T18MXA
136	20201022T151711_20201022T152346_T18MXA
137	20201027T151709_20201027T151707_T18MXA
138	20201101T151711_20201101T152339_T18MXA
139	20201106T151709_20201106T151706_T18MXA
140	20201111T151711_20201111T151708_T18MXA
141	20201121T151711_20201121T151706_T18MXA
142	20201126T151709_20201126T151704_T18MXA
143	20201201T151701_20201201T151703_T18MXA
144	20201206T151659_20201206T151702_T18MXA
145	20201211T151701_20201211T151700_T18MXA
146	20201216T151659_20201216T151659_T18MXA
147	20201221T151701_20201221T151703_T18MXA
148	20201226T151659_20201226T151701_T18MXA
149	20201231T151701_20201231T151704_T18MXA
150	202101051151709_202101051151703_118MXA
151	202101101151/11_20210110T151705_T18MXA
152	202101151151709_20210115T151703_T18MXA
153	202101201151/11_20210120T151705_T18MXA
154	202101251151709_202101251151704_T18MXA
155	202101301151701_20210130T151704_T18MXA
156	202102041151709_20210204T151703_T18MXA

N	Código de escena
157	20210209T151701_20210209T152329_T18MXA
158	20210214T151659_20210214T151702_T18MXA
159	20210219T151701_20210219T152325_T18MXA
160	20210224T151659_20210224T151850_T18MXA
161	20210301T151701_20210301T152218_T18MXA
162	20210306T151709_20210306T151703_T18MXA
163	20210311T151701_20210311T152109_T18MXA
164	20210316T151709_20210316T151703_T18MXA
165	20210321T151701_20210321T151703_T18MXA
166	20210326T151659_20210326T151713_T18MXA
167	20210331T151701_20210331T151701_T18MXA
168	20210405T151659_20210405T152048_T18MXA
169	20210410T151701_20210410T151659_T18MXA
170	20210415T151659_20210415T151659_T18MXA
171	20210420T151701_20210420T152101_T18MXA
172	20210425T151659_20210425T151709_T18MXA
173	20210430T151701_20210430T151701_T18MXA
174	20210505T151659_20210505T151701_T18MXA
175	20210510T151701_20210510T151703_T18MXA
176	20210515T151709_20210515T151703_T18MXA
177	20210520T151701_20210520T152200_T18MXA
178	20210525T151709_20210525T151845_T18MXA
179	20210530T151711_20210530T151705_T18MXA
180	20210604T151709_20210604T152345_T18MXA
181	20210609T151711_20210609T151705_T18MXA
182	20210614T151709_20210614T152212_T18MXA
183	20210619T151701_20210619T152211_T18MXA
184	20210624T151709_20210624T151704_T18MXA
185	20210629T151711_20210629T151706_T18MXA
186	20210704T151709_20210704T152251_T18MXA
187	20210709T151711_20210709T151707_T18MXA
188	20210714T151709_20210714T152118_T18MXA
189	20210719T151711_20210719T152224_T18MXA
190	20210724T151709_20210724T151833_T18MXA
191	20210729T151711_20210729T151707_T18MXA
192	20210803T151709_20210803T152240_T18MXA
193	20210808T151711_20210808T151707_T18MXA
194	20210813T151709_20210813T151704_T18MXA
195	20210818T151711_20210818T152108_T18MXA
196	20210823T151659_20210823T151702_T18MXA

N	Código de escena
197	20210828T151711_20210828T151706_T18MXA
198	20210902T151659_20210902T151700_T18MXA
199	20210907T151701_20210907T151704_T18MXA
200	20210912T151659_20210912T152156_T18MXA
201	20210917T151711_20210917T152119_T18MXA
202	20210922T151659_20210922T151701_T18MXA
203	20210927T151711_20210927T151842_T18MXA
204	20211002T151709_20211002T152257_T18MXA
205	20211007T151711_20211007T152031_T18MXA
206	20211012T151709_20211012T152027_T18MXA
207	20211017T151711_20211017T152226_T18MXA
208	20211022T151709_20211022T152226_T18MXA
209	20211027T151711_20211027T152306_T18MXA
210	20211101T151709_20211101T152324_T18MXA
211	20211106T151711_20211106T152402_T18MXA
212	20211111T151709_20211111T152307_T18MXA
213	20211116T151711_20211116T151705_T18MXA
214	20211121T151659_20211121T151701_T18MXA
215	20211126T151701_20211126T151704_T18MXA
216	20211201T151659_20211201T151659_T18MXA
217	20211206T151701_20211206T151703_T18MXA
218	20211211T151659_20211211T151658_T18MXA
219	20211216T151701_20211216T151704_T18MXA
220	20211221T151659_20211221T151658_T18MXA
221	20211226T151711_20211226T151705_T18MXA
222	20211231T151659_20211231T151700_T18MXA
223	20220105T151711_20220105T151705_T18MXA
224	20220110T151659_20220110T151700_T18MXA
225	202201151151711_202201151151705_118MXA
226	202201201151659_202201201151659_118MXA
227	202201251151701_202201251152341_118MXA
228	202201301151659_202201301152302_118MXA
229	202202041151/01_20220204115211/_118MXA
230	202202091151659_202202091152313_118MAA
231	202202141151701_202202141151816_118MXA
232	2022021911509_202202191152212_118MXA
233	202202241151/11_202202241152227_118MXA
234	20220301113039_20220301131921_1130MAA
235	202203001131/11_202203001132008_118MAA
230	ZUZZUSTTTTST039_ZUZZUSTTTTST/UZ_T18MXA

N	Código de escena
237	20220316T151711_20220316T151708_T18MXA
238	20220321T151659_20220321T151818_T18MXA
239	20220326T151711_20220326T151707_T18MXA
240	20220331T151659_20220331T152018_T18MXA
241	20220405T151711_20220405T151705_T18MXA
242	20220410T151659_20220410T151809_T18MXA
243	20220415T151711_20220415T151707_T18MXA
244	20220420T151659_20220420T151731_T18MXA
245	20220425T151711_20220425T151709_T18MXA
246	20220430T151659_20220430T151657_T18MXA
247	20220505T151711_20220505T151709_T18MXA
248	20220510T151659_20220510T151701_T18MXA
249	20220515T151711_20220515T151708_T18MXA
250	20220520T151709_20220520T151704_T18MXA
251	20220525T151711_20220525T151711_T18MXA
252	20220530T151709_20220530T151704_T18MXA
253	20220604T151711_20220604T151730_T18MXA
254	20220609T151709_20220609T151713_T18MXA
255	20220614T151711_20220614T152004_T18MXA
256	20220619T151709_20220619T151708_T18MXA
257	20220624T151721_20220624T151958_T18MXA
258	20220629T151709_20220629T151709_T18MXA
259	20220704T151721_20220704T151717_T18MXA
260	20220709T151709_20220709T151708_T18MXA
261	20220714T151721_20220714T151723_T18MXA
262	20220719T151709_20220719T151709_T18MXA
263	20220724T151711_20220724T151714_T18MXA
264	20220729T151709_20220729T151709_T18MXA
265	20220803T151721_20220803T151715_T18MXA

N	Código de escena
266	20220808T151709_20220808T151708_T18MXA
267	20220813T151721_20220813T152335_T18MXA
268	20220818T151709_20220818T151706_T18MXA
269	20220823T151721_20220823T152332_T18MXA
270	20220828T151709_20220828T152330_T18MXA
271	20220902T151721_20220902T152331_T18MXA
272	20220907T151709_20220907T151918_T18MXA
273	20220912T151711_20220912T151714_T18MXA
274	20220917T151709_20220917T152118_T18MXA
275	20220922T151711_20220922T151711_T18MXA
276	20220927T151709_20220927T152117_T18MXA
277	20221002T151711_20221002T152232_T18MXA
278	20221007T151659_20221007T152316_T18MXA
279	20221012T151711_20221012T151922_T18MXA
280	20221017T151709_20221017T151707_T18MXA
281	20221022T151711_20221022T152231_T18MXA
282	20221027T151709_20221027T151703_T18MXA
283	20221101T151711_20221101T151708_T18MXA
284	20221106T151659_20221106T151702_T18MXA
285	20221111T151711_20221111T151707_T18MXA
286	20221116T151709_20221116T151753_T18MXA
287	20221121T151701_20221121T151914_T18MXA
288	20221126T151709_20221126T151804_T18MXA
289	20221201T151701_20221201T152033_T18MXA
290	20221206T151659_20221206T151801_T18MXA
291	20221211T151701_20221211T152102_T18MXA
292	20221216T151659_20221216T151803_T18MXA
293	20221221T151701_20221221T152111_T18MXA
294	20221226T151709_20221226T151804_T18MXA