

FACULTAD DE FARMACIA Y BIOQUÍMICA ESCUELA PROFESIONAL DE FARMACIA Y BIOQUÍMICA

TESIS

"RIESGO QUÍMICO - TOXICOLÓGICO DE ADULTERANTES EN LA PASTA BÁSICA DE COCAÍNA (PBC) EN LA UNIDAD MÉDICO LEGAL REGIÓN II -LORETO, 2022"

PARA OPTAR EL TÍTULO PROFESIONAL DE QUÍMICO FARMACÉUTICO

PRESENTADO POR:

LUIS ALBERTO PAREDES SALAS FRANK JHONNY PANDURO MACAHUACHI

ASESORES:

Q.F. CARLOS ADOLFO CONTRERAS LICETTI, Dr. Q.F. JAIME ROMEL MOLERO MORENO

IQUITOS, PERÚ 2023

ACTA DE SUSTENTACIÓN DE TESIS N°013-2023-CGT-FFyB-UNAP

El jurado calificador y dictaminador designado mediante Resolución Decanal N°197-2022-FFyB-UNAP, está integrada por:

- Q.F. FRIDA ENRIQUETA SOSA AMAY, Dra.
- Q.F. WILFREDO OSWALDO GUTIÉRREZ ALVARADO, Mtro.

Presidente Miembro Miembro

Q.F. HENRY VLADIMIR DELGADO WONG.

Luego de haber escuchado con atención y formulado las preguntas necesarias, las cuales fueron respondidas: ... ADECUADAMENTE....

El jurado después de las deliberaciones correspondientes, llegó a las siguientes conclusiones:

La sustentación pública de la tesis ha sido APROBADA con la calificación BUENA

Estando los bachilleres aptos para obtener el Título Profesional de Químico Farmacéutico.

Siendo las 13:00 hrs se dio por terminado el acto ACADÉMICO DE SUSTENTACION

Q.F. FRIDA ENRIQUETA SOSA AMAY, Dra.

Presidente

Q.F. WILFREDO OSWALDO GUTIÉRREZ ALVARADO, Mtro.

Miembro

Q.F. HENRY VLADIMIR DELGADO WONG.

Miembro

Q.F. CARLOS ADOLFO CONTRERAS LICETTI, Dr.

Asesor

Q.F. JAIME ROMEL MOLERO MORENO.

Asesor

UNIVERSIDAD

LICENCIADA

RESOLUCIÓN N°012-2019-SUNEDU/CD

Lima, 1 de febrero de 201

Carretera Zungarococha – Nina Rumi Correo electrónico: farmacia@unaiquitos.edu.pe San Juan – Loreto – Perú.Celular N°942917936 www.unapiquitos.edu.perú

JURADO Y ASESORES

Q.F. FRIDA ENRIQUETA SÓSA AMAY, Dra CQFP N° 03468

Presidenta de jurado calificador y dictaminador

Q.F. WILFREDO OSWALDO GUTIERREZ ALVARADO CQFP N° 01399

Miembro de jurado calificador y dictaminador

Q.F. HENRY VLADIMIR DELGADO WONG

CQFP N° 12492

Miembro de jurado calificador y dictaminador

Q.F. CARLOS ADOLFO. CONTRERAS LICETTI, Dr. CQFP N° 4134 Asesor

Q.F. JAIME ROMEL MOLERO MORENO CQFP N° 3840

Asesor

3

	Reporte de simili
NOMBRE DEL TRABAJO	AUTOR
FFB_TESIS_PAREDES SALAS_PANDURO MACAHUACHI (3era rev).pdf	PAREDES SALAS / PANDURO MACAHU CHI
RECUENTO DE PALABRAS	RECUENTO DE CARACTERES
4320 Words	24557 Characters
RECUENTO DE PÁGINAS	TAMAÑO DEL ARCHIVO
23 Pages	340.0KB
FECHA DE ENTREGA	FECHA DEL INFORME
May 22, 2023 12:39 PM GMT-5	May 22, 2023 12:39 PM GMT-5

4% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base c

- 3% Base de datos de Internet
- 1% Base de datos de publicaciones

· Base de datos de Crossref

- Base de datos de contenido publicado de Crosso
- 3% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

Material bibliográfico

• Coincidencia baja (menos de 10 palabras)

DEDICATORIA

Dedico principalmente este trabajo a Dios, por haberme dado la vida y permitirme llegar hasta este momento tan importante de mi formación profesional. A mis padres Luis y Zoila, por ser el pilar más importante y por demostrarme su cariño y apoyo Incondicional. A mi asesor por tenerme paciencia y guiarme correctamente en este trabajo. A los docentes que marcaron mi formación profesional. A mi grupo de amigos y compañeros que siempre nos apoyamos A mi compañera de vida, mi esposa Laury es mi aliento mi inspiración y gran soporte en mi vida. éxitos en esta vida y muchas bendiciones.

Luis Alberto

Dedico este trabajo a mi madre Elia, a quien debo la vida y todo lo que soy por quien quiero superarme y ser mejor cada vez. También se lo dedico a mí hermana violeta quien me mostro su apoyo constante, Dios me los Bendiga.

Frank Jhonny

AGRADECIMIENTOS

Agradecemos a Dios por protegernos durante toda esta carrera universitaria, por darnos fuerzas, esperanzas y ser nuestra guía permanente a pesar de todos los obstáculos.

A nuestros asesores Q.F. Carlos Adolfo Contreras Licetti y Q.F. Jaime Romel Molero Moreno que siempre estuvieron dispuestos a solucionar los problemas que se presentaron.

Gracias a todas las personas que ayudaron en la realización de este proyecto.

"EL CAMINO AL ÉXITO ES LA ACTITUD"

ÍNDICE GENERAL

	Pág.
PORTADA	i
ACTA DE SUSTENTACIÓN	ii
JURADO Y ASESORES	iii
RESULTADO DEL INFORME DE SIMILITUD	iv
DEDICATORIA	V
AGRADECIMIENTOS	vi
ÍNDICE GENERAL	vii
ÍNDICE DE TABLAS	ix
ÍNDICE DE FIGURAS	х
RESUMEN	xi
ABSTRACT	xii
INTRODUCCIÓN	1
CAPÍTULO I: MARCO TEÓRICO	2
1.1. Antecedentes	3
1.2. Bases teóricas	4
1.3. Definición de términos básicos	6
CAPÍTULO II: HIPÓTESIS Y VARIABLES	8
CAPÍTULO III: METODOLOGÍA	10
3.1. Tipo y diseño	10
3.2. Poblacion y Muestra	10
3.3. Procedimiento de recoleccion de datos	10
3.4. Procedimiento de infrarrojo(IR)	11

3.5. Determinacion de la pasta basica de cocaina	11
3.6. Evaluacion del riesgo quimico toxicologico	11
3.7. Calculos para determinar las concentraciones a inocular	13
3.8. Procesamiento y analisis de los datos	13
3.9. Aspectos eticos	13
CAPÍTULO IV: RESULTADOS	14
CAPÍTULO V: DISCUSIÓN	18
CAPÍTULO VI: CONCLUSIONES	20
CAPÍTULO VII:RECOMENDACIONES	21
CAPÍTULO VIII. REFERENCIAS BIBLIOGRÁFICAS	22
ANEXOS	27

ÍNDICE DE TABLAS

	Pág
Tabla 1. Análisis por IR de muestras PBC decomisadas.	14
Tabla 2. Administracion y periodo de latencia manifestaciones	15
Tabla 3. Manifestaciones clínicas a dosis de 5 mg/kg	16
Tabla 4. Manifestaciones clínicas a dosis de 10 mg/kg	17
Tabla 5. Manifestaciones clínicas a dosis de 15 mg/kg	17

ÍNDICE DE FIGURAS

										Pág.
FIGURA 1.	Toma	de	muestra	para	el	análisis	de	Drogas	cocaí	nicas
27										
FIGURA 2.	Pruebas ar	nalític	as en Mir	nisterio	púb	lico para l	a ide	ntificació	n de dr	ogas
cocaínicas.										27
FIGURA 3.	Bandas de	absc	rción en e	espectr	osco	pía infrar	rojo.			28
FIGURA 4.	Equipo de	espe	ctrofotom	etría inf	rarro	ojo				28
FIGURA 5.	Lectura en o	equipo	o de Espe	ectrofoto	ome	tría IR				29
FIGURA 6.	Incautació	n de F	Pasta Bás	ica De	Coc	aína (PB0	C)			29
FIGURA 7.	Estructura	quím	ica de los	alcaloi	des					30
FIGURA 8.	Frontis del	Minis	sterio Púb	lico-Un	idad	Médico L	-egal	-Loreto		30
FIGURA 9.	Analizando	o las d	diferentes	colorad	cione	es a travé	s de	una Bateı	´ía	31
FIGURA 10	. Identificaci	ión de	Coloraci	ones co	on m	uestras a	dulte	radas		31
FIGURA 11	. Batería de	Rea	ctivos de l	dentific	ació	n utilizad	os en	análisis	prelir	minar
32										
FIGURA 12	. Reactivos	utiliza	idos y las	diferen	ites	muestras	adult	eradas		32
FIGURA 13	. Baterías	utiliza	das con n	nuestra	ıs pı	ıras y adu	ltera	ntes		33
FIGURA 14	. Análisis pr	elimir	ar e ident	tificació	n pc	or Colorim	etría			34
FIGURA 15	. Administr	acion	a via IP e	n ratas						35

RESUMEN

El consumo de cocaína continúa siendo un alto riesgo en salud y costos para nuestra sociedad, que puede agravarse por la presencia de adulterantes. El objetivo fue determinar el riesgo químico -toxicológico por presencia de adulterantes en la pasta básica de cocaína, en el Ministerio Público Región II-Loreto. El trabajo con diseño cuantitativo, descriptivo, y experimental, tuvo como población el volumen aprox. 150 Kg de pasta básica de cocaína decomisada en el primer semestre del 2022 provenientes de las provincias Ramón Castilla y Maynas y se eligió por muestreo simple a treinta (30) puntos de muestreo, las mismas que fueron analizadas por espectrofotometría infrarroja y el riesgo toxicológico fue evaluado en ratones inoculados por vía intraperitoneal. Se evidenció como adulterantes la presencia de almidón (13%) y cafeína (18%); y en los ratones albinos se observó acción psicoestimulante por cocaína y en el caso de la adulteración con cafeína se vio incremento ritmo cardiaco, hiperactividad, ansiedad, inquietud y convulsiones.

Palabras clave: espectrofotometría infrarroja, adulterantes., convulsiones, cafeína salud pública.

ABSTRACT

Cocaine use continues to be a high health and cost risk for our society, which can be

aggravated by the presence of adulterants. The objective was to determine the

chemical-toxicological risk due to the presence of adulterants in the basic cocaine

paste, in the Public Ministry Region II-Loreto. The study with quantitative, descriptive,

and experimental design, had as population the volume 150 Kg of basic cocaine paste

seized in the first semester of 2022 from the provinces of Ramón Castilla and Maynas

and was chosen by simple sampling at thirty (30) sampling points, the same ones that

were analyzed by infrared spectrophotometry.

and the toxicological risk was evaluated in mice inoculated intraperitoneally. The

presence of starch (13%) and caffeine (18%) was evidenced as adulterants; and in

albino mice, psychostimulant action by cocaine was observed, and in the case of

adulteration with caffeine, increased heart rate, hyperactivity, anxiety, restlessness,

and seizures were observed.

Keywords: infrared spectrophotometry, adulterants, seizures, caffeine public health.

Χİİ

INTRODUCCIÓN

El nivel de adicción por el consumo de alcaloides tipo pasta básica, marihuana, presentan un alto nivel de adicción en quienes la consumen, así como problemas de despersonalización con graves consecuencias en su salud física y mental e implicancias en su núcleo familiar, terminando finalmente en el abandono o recluido en algún centro de rehabilitación (1).

Las evidencias forenses, muestran que los adulterantes a los alcaloides de abuso pueden ser activos o inactivos, por un lado facilitan aumentar el volumen, dentro de ellos tenemos lactosa, almidón de maíz, talco y polvo de ladrillo accesibles permitiendo aumentar el volumen de la droga (2-4), los adulterantes activos potencian la acción principal de la droga, como la cafeína con acción estimulante, aunque menos potente que la cocaína y anfetamina; no obstante la procaína disminuye la volatilización de heroína, facilitando su vaporización (4).

Estos agentes químicos incorporados de forma intencional a los alcaloides, tienen como objetivo, obtener mayor rentabilidad económica en su ilegal comercio, no obstante, debemos tener claro los riesgos que esto conlleva, por cuanto el consumidor desconoce el riesgo de consumir drogas de abuso adulteradas (5)

La cafeína un compuesto natural con propiedades estimulantes-cognitivas del sistema nervioso central, incorporado dentro la pasta básica permite potenciar el efecto adictivo, además que disminuye el volumen de la sustancia pura (6). Contrariamente, el almidón es un complejo polisacárido con una importante fuente de energía, a menudo se utiliza como adulterante para aumentar el volumen y darle el aspecto blanquecino (7).

En tal propósito nuestro interés en el presente trabajo fue determinar el riesgo químico -toxicológico por presencia de adulterantes en la pasta básica de cocaína, a nivel del Ministerio Público Región II-Loreto.

CAPÍTULO I: MARCO TEÓRICO

1.1. Antecedentes

En 2020, en su estudio experimental, analítico, exploratorio y transversal "Cambios

funcionales a nivel molecular con acción potenciador de la cafeína sobre el efecto

estimulante de la pasta básica de cocaína" demostró que la cafeína desarrolla un

efecto potenciador de la pasta básica de cocaína, estimulante, motivacional,

generando un efecto de dependencia (8).

En 2019, a través de su estudio, analítico, experimental, exploratorio "Estudio de los

principales adulterantes reportados en muestras de cocaína" determinó finalmente que

la lidocaína, cafeína, benzocaína, diltiazem siguen constituyendo los principales

adulterantes en las muestras de cocaína, ocasionando un efecto sinérgico, estimulante

y con alto nivel de dependencia (9).

En 2017, a través de su estudio con diseño observacional, descriptivo, no

experimental "Cocaína adulterada con levamisol: reporte de tres casos clínicos",

incluyó como población de estudio tres casos de pacientes hospitalizados,

determinando que las complicaciones tóxicas secundarias al consumo de pasta básica

de cocaína, concluyendo que la presencia de adulterantes como el levamizol un

antihelmíntico veterinario, desarrolla agranulocitosis, neutropenia, vasculitis y leuco

encefalopatía (10).

En 2017, en su trabajo "Rol de la cafeína y efecto potenciador de la pasta básica de

cocaína en la actividad eléctrica cerebral del sueño "desarrolla una investigación

experimental, observacional, descriptivo. La investigación demostró el efecto de la

pasta básica de cocaína, sobre la actividad profunda del sueño en ratas adultas,

concluyendo que la administración de la pasta básica adulterada con cafeína aumenta

el estado de vigilia, disminuyendo el sueño no REM, generando un perfil

electroencefalográfico diferente (11).

2

En 2016, en su investigación "Estudios neuroquímicos y actitudes del comportamiento generados por pasta básica de cocaína inhalada en ratas" con diseño experimental, descriptivo, observacional, La investigación determinó el efecto estimulante y neuroquímico inducido por inhalación pulmonar de diferentes muestras de pasta básica de cocaína, evaluando el papel de la cafeína, concluyendo finalmente que la pasta básica volatilizada, induce aumento en la transmisión dopaminérgica (12)

En 2017, en su trabajo "Caracterización de muestras de cocaína en una provincia ecuatoriana" con diseño cuantitativo, descriptivo, .la investigación determinó que, al identificar muestras de cocaína en un laboratorio de Química Forense, concluyó que un alto porcentaje de muestras presentan impurezas derivadas de la cocaína base además de fenacetina, almidón, levamizol y aminopirina (13)

1.2. Bases teóricas

1.2.1 Área de control de drogas psicoactivas.

El Servicio de Toxicología forense -División Médico Legal-Región II Loreto, dentro de sus labores, se encarga del análisis y detección de adulterantes en la incautación de drogas psicoactivas en operativos realizados y usuarios peritados, los mismos que provienen de la provincia de Maynas y provincias de la periferia, luego el informe respectivo se remitió al Ministerio Público para el proceso legal correspondiente.

Ante la sospecha o presunción de estar frente a esta droga ilícita, la autoridad policial procede a su intervención tomando una pequeña muestra que al someterla al contacto con el reactivo y dar la coloración azul turquesa (característico de la pasta básica) procede a la detención del infractor y decomiso de la droga, la misma que es remitida al Ministerio público mediante acta de incautación.

En la región Loreto, la droga más fácil de conseguir es marihuana (11,7%) seguida de cocaína (7,2%), asimismo las regiones cocaleras se han ido quintuplicando ampliando el cultivo de hectáreas en la producción de la hoja de coca. Estas áreas de cultivo están distribuidas en dos provincias Ramón Castilla, con sus distritos Pevas, San Pablo, Yavarí y Maynas con sus distritos Napo, Putumayo, Contamana, Mazan, siendo el más extenso Teniente Manuel Clavero (1080 hectáreas). La provincia Ramón Castilla (especialmente Caballococha) concentra el mayor comercio ilícito que permite exportar la droga al Brasil -Tabatinga (14).

1.2.2 Toxicidad por adulterantes.

La toxicidad desarrolla un efecto altamente adictivo sobre las emociones, la conducta, estado de ánimo, depresión, angustia, hasta cuadros patológicos como paranoia y severos trastornos afectivos con su núcleo familiar (15).

Las drogas psicoactivas, generan un notable desgaste en la salud del adicto, potenciando el riesgo toxico por sus propiedades farmacológicas, considerando el nivel de concentración, vía de administración, porcentaje y contexto de consumo (13).

En las distintas formas de adulterantes para pasta básica encontramos aquellos que permitan aumentar el volumen como el talco, almidón, lactosa o polvo de ladrillo que permiten compensar la pérdida efectuada en las diluciones, no obstante, otros tienen efectos estimulantes como anfetaminas, cafeína, y agentes como benzocaína, lidocaína, procaína, para imitar el efecto anestésico de la cocaína (15)

La interacción entre cafeína y cocaína ha demostrado el incremento de la hiperactividad locomotora incrementada por cocaína y lo mismo sucede cuando los animales son expuestos en forma prolongada a bajas dosis de cafeína en forma oral, estas interacciones en el proceso de sensibilización son importantes si se considera la presencia de cafeína como adulterante principal en la pasta básica de cocaína (16).

Ha sido ampliamente demostrada en humanos, la inhibición del sueño y el cansancio por la cafeína, potenciando la vigilia y actividad psicomotora (16), en ratas administraciones de 12.5 / 25mg/kg disminuyen la duración total del sueño y aumentan la latencia al sueño REM (18).

1.2.3 Modelos animales y su adicción a las drogas.

Los modelos animales utilizados en el proceso de adicción a las drogas, permiten estudiar los procesos conductuales y neurobiológicos asociados a la administración de alcaloides, no obstante, estas respuestas no podrían extrapolarse a los seres humanos, la semejanza o similitud no siempre es exacta; sin embargo, gracias a estos modelos se comprende los diversos factores que influyen en la drogadicción, siendo necesario profundizar con mayores aportes que finalmente nos garanticen resultados seguros y confiables.

1.3. Definición de términos básicos.

- **a.-Contaminante:** Un contaminante es una sustancia particular que de forma accidental puede ingresar dentro de un sistema afectando negativamente la utilidad o finalidad de este último (18).
- **b.- Adulterante:** Agentes químicos con propiedades similares a la sustancia original que al ser incorporados como sustitutos a la sustancia original generan un potencial de acción con propiedades similares a la droga. (18).
- **c.- Cocaína:** Alcaloide derivado de las hojas de Erythroxilon coca .de aspecto cristalino y color blanco (19).
- **d.- Síndrome de abstinencia:** Signos y síntomas que aparecen al cese brusco de una sustancia, reapareciendo al volver a consumirla (20)
- **e.- Anfetamina:** Corresponde a una clasificación de droga estimulante con potencial efecto en SNC (20)
- **f.- Almidón**: Es una macromolécula compuesta por dos polímeros distintos de glucosa, la amilosa y la amilopectina. Es el glúcido de reserva de la mayoría de las especies vegetales (19).
- g.- Cafeína: Sustancia química de notable efecto estimulante en SNC (20)
- h.- Abuso de drogas: Es el consumo frecuente de una sustancia psicoactiva que amenaza la salud mental, física y psíquica de un individuo (20)
- i.- Síndrome de abstinencia: Es el conjunto de signos y síntomas que aparecen al cesar bruscamente el consumo de una sustancia, y que desaparece al volverla a consumir (20)

- **j.- Estupefaciente**: Agentes químicos relacionados al control y terapia del dolor. Siendo sustancias narcóticas su dosis debe ser restringida y estricta bajo control para cada patología especifica (19).
- **k. Tolerancia**: Relacionada a la necesidad progresiva de aumentar las cantidades crecientes de una droga para alcanzar el efecto deseado (20).
- **I.- Agente simpaticomimético:** Agentes químicos cuya acción a nivel de receptores adrenérgicos inducen la liberación de noradrenalina de forma directa (20)
- **m.- Prevención**: Orientada a la adopción de medidas y normas que permitan prevenir el desarrollo de todo riesgo o suceso (21).
- **n.- Dependencia de drogas:** Conjunto de síntomas cognoscitivos, comportamentales y fisiológicos que indican que un individuo continúa consumiendo una sustancia (20)
- o.- Factor de Protección: Permiten que una persona pueda superar de forma exitosa las circunstancias y demás condiciones de un entorno social desfavorable (21)
- **p.-** La **espectrofotometría infrarroja**: Técnica de análisis instrumental que permite la identificación de grupos funcionales en moléculas orgánicas (22).
- **q- Drogas cocaínicas:** Corresponden aquellas sustancias de gran poder adictivo que afectan al cerebro, es un polvo de color blanco con efecto estimulante, químicamente es un alcaloide tropánico (23).

CAPÍTULO II: HIPÓTESIS Y VARIABLES

2.1.- Formulación de la hipótesis

Por el tipo de estudio descriptivo no corresponde formular hipótesis.

2.2.- Variables y su operacionalización

Sustancias químicas adulterantes de pasta básica de cocaína (PBC); compuestos químicos que aumentan el volumen o los efectos de la cocaína

Riesgos químico toxicológicos; se da por la inhalación de PBC adulterada con sustancias químicas.

2.2.2 Operacionalización de variables

		Tipo de			
Variable de		variable			
estudio	Definición operacional	Por su	Indicador	Escala de medición	Medio de verificación
		naturaleza			
			Reacción colorimétrica para		
Sustancias químicas	Detección de sustancias	Cualitativa	identificación alcaloides.	Nominal	Hoja de reporte analítico
adulterantes	químicas adulterantes e		-HCl Tiocianato de cobalto,		
	muestras de PBC		-Reactivo de Mather,		
	decomisadas en la región		-Reactivo de Mayer.		
	Loreto.		Identificación almidón		
			Reactivo de Lugol.		
					Hoja de registro de
			Bandas de absorción en	Escalar	conducta y actitudes del
		Cuantitativa	Espectrometría Infrarrojo.		ratón.
Riesgo químico -	Observación del efecto de la	Cualitativa	Comportamiento según test de	Nominal	
toxicológico	cocaína Cl., PBC con y sin		Irwing		
	adulterante sustancia sobre		in wing		
	el SNC y las funciones				
	fisiológicas. administrado vía				
	intraperitoneal con cocaína				
	adulterada				

CAPÍTULO III: METODOLOGÍA

3.1. Diseño

La investigación con enfoque descriptivo, diseño experimental, cuali-cuantitativo,

constituye el procedimiento de decisión para evaluar y determinar nuestra variable

independiente comprobando la hipótesis planteada.

3.2 Población y muestra

La población correspondió a los decomisos durante el periodo 2022 que fue

aproximadamente de 300 kg de droga en toda la región.

Se procedió al análisis de treinta (30) muestras provenientes de las provincias Ramón

Castilla, (distritos Pevas, San Pablo, Yavarí, Ramón Castilla) y la provincia Maynas

(distritos Napo, Putumayo, Mazán, Indiana, Manuel Clavero),

3.4. Procesamientos de recolección de datos

Se tomaron muestras representativas de las muestras totales, las mismas que fueron

decomisadas en los operativos de incautación y decomiso a nivel de las Provincia de

Maynas y Ramón Castilla.

Las muestras de forma individual fueron pesadas para luego ser analizadas en el equipo

de espectrofotometría infrarrojo, que va poder determinar la pureza de la muestra de

cocaína más los adulterantes que pueda contener los mismos que podrán ser

identificados mediante absorción de los intervalos de frecuencia. El estudio requirió de 24

ratones albinos, macho cepa BALB/c entre 32,0 - 43,0 g, alojados en jaulas (60 cm X 50

cm x45 cm) con un ciclo de luz-oscuridad 12/12 a una temperatura de 25°C provistas de

alimento y agua ad libitum.

10

3.4.1. Procedimiento en infrarrojo (IR)

El análisis correspondiente nos permitirá la identificación de sustancia a través de sus grupos funcionales, constituye por tanto una técnica de alta precisión por métodos electrónicos.

La técnica para el análisis de la muestra sólida consiste en pesar 2-3mg del producto mezclar con NaCl 10 ml aprox. para continuar pulverizando de forma homogénea, luego esta mezcla se comprime en una pastilladora formando una película transparente, que luego será sometida a la acción del IR (24).

A.1. Determinación de Pasta básica de cocaína.

Cocaína y cafeína (Muestra adulterada)

Para la realización de los experimentos desarrollados, se seleccionaron tres muestras a base de clorhidrato de cocaína, pasta básica de cocaína y muestra adulterada con cafeína, teniendo como referencia un grupo de control. Para su administración se pesaron 0.5g de la muestra siendo diluidas con agua destilada en un matraz de 500 ml, luego llevadas al zonificador.

B. Evaluación de riesgo químico toxicológico

Las muestras corresponden a clorhidrato de cocaína, pasta básica de cocaína; y muestra adulterada con almidón y cafeína, las mismas que fueron administradas a los ratones vía intraperitoneal de acuerdo al peso.

El rol de la cafeína como adulterante activo, posee propiedades estimulantes similar a la cocaína y anfetamina, aunque en menor grado, sin embargo, el almidón como adulterante inactivo permiten aumentar el volumen de la droga, en general no poseen mayor riesgo en la persona que consume.

La PBC fue inyectada a dosis equivalente de 1-15mg/kg, tomando como referencia la

literatura existente para cocaína, asimismo se administró vía intraperitoneal de acuerdo al peso del animal y registrando el tiempo de aparición de las respuestas.

Figura 1. Esquema de evaluación de toxicidad

3.6.- Cálculos para determinar las concentraciones a inocular.

Dosis de 5 mg/kg

$$VI = rac{Dosis\ x\ W(peso)}{ ext{[]}}$$
 $VI = rac{5\ mg\ /\ kg\ x\ 0.044\ kg}{50\ mg\ /\ ml}$
 $VI = 0.5\ mg\ /\ ml$

Dosis de 10 mg/kg

$$VI = \frac{Dosis \ x \ W(peso)}{[\]}$$

$$VI = \frac{10 \ mg \ / \ kg \ x \ 0,046 \ kg}{1 \ mg \ / \ ml}$$

$$VI = 0,46 \ mg \ / \ ml$$

3.5. Procesamiento y análisis de los datos.

El presente estudio fue procesado en Excel y se muestran como corresponde al tipo de estudio a la estadística descriptiva.

3.7. Aspectos éticos

Así mismo se tuvo en cuenta los principios éticos, al trabajar con animales de experimentación proporcionándole alimentación, agua destilada, ambientes adecuados en jaulas, con ventilación, humedad y temperatura favorables, asimismo se administraron las drogas de forma cuidadosa evitándole causar el menor daño posible.

Se adjunta el permiso o autorización del Ministerio Público-Unidad Médico Legal Región II- Loreto, para desarrollar de forma profesional y objetiva el presente estudio.

CAPITULO IV: RESULTADOS

Tabla 1. Análisis por IR de muestras procedentes de decomisos de PBC

Procedencia	Frecuencia	Resultado (pbc +adulterante)
Yavarí	M1	Pbc + almidón
Yavarí	M2	Pbc + almidón
Yavarí	M3	Pbc + cafeína
Yavarí	M4	Pbc + cafeína
Yavarí	M5	Pbc
Yavarí	M6	Pbc
Yavarí	M7	Pbc + cafeína
Yavarí	M8	Pbc + cafeína
Yavarí	M9	Pbc + cafeína
Yavarí	M10	Pbc + cafeína
San Pablo	M11	Pbc
San Pablo	M12	Pbc + cafeína
San Pablo	M13	Pbc + almidón
San Pablo	M14	Pbc + cafeína
San Pablo	M15	Pbc + almidón
Napo	M16	Pbc + cafeína
Napo	M17	Pbc + almidón
Napo	M18	Pbc + almidón
Napo	M19	Pbc + almidón
Napo	M20	Pbc + cafeína
Putumayo	M21	Pbc + almidón
Putumayo	M22	Pbc + almidón
Putumayo	M23	Pbc + cafeína
Putumayo	M24	Pbc + cafeína
Putumayo	M25	Pbc + cafeína
Iquitos	M26	Pbc + cafeína

Iquitos	M27	Pbc + cafeína
Iquitos	M28	Pbc + cafeína
Iquitos	M29	Pbc + cafeína
Iquitos	M30	Pbc + cafeína
	30 muestras.	

De los resultados obtenidos por análisis de las muestras podemos indicar que 09 muestras contenían el adulterante almidón, 18 muestras contenían pbc más cafeína y 03 muestras se encontraban al estado puro, sin adulterante. Este análisis muestra que un mínimo porcentaje de muestras contenían únicamente pbc sin adulterante.

Tabla 2. Administración y período de latencia de manifestación de efectos.

Grupo experimental					
Tratamiento	Dosis	Periodo de latencia (Segundos)	Total		
Control Negativo	DMSO		3 ratones		
Cocaína CI (Control positivo)	5 mg /kg	5 seg	3 ratones		
Cocaína Cl (Control positivo)	10mg/kg	3 seg	3 ratones		
Pasta básica de cocaína	5 mg /kg	8 seg	3 ratones		
PBC / adulterante cafeína	5 mg /kg	10 seg	3 ratones		
Pasta básica de cocaína	15 mg/kg	8 seg	3 ratones		
PBC / adulterante cafeína	15 mg/kg	12 seg	3 ratones		

Tabla 3. Manifestaciones clínicas a dosis de 5mg/kg

Ratón	Control negativo	Cocaína Cl. (control positivo)	PBC	Adulterado	
Blanco	Interactúa con otros ratones y se agrupa	hiperactivo, acicalamiento	alterna quietud con hiperactividad, acicalamiento	quieto, arrastra el tren posterior, respira agitado, ataxia	
Cabeza	acicalamiento	respira agitado, acicalamiento	permanece quieto	se desplaza arrastrándose pegado a la pared, se acicala con desesperación	
Lomo	tranquilo	quieto, acicalamiento y tiende a agruparse	confundido, agitado y tiende a agruparse	quieto, somnoliento, respira agitado	

Los ratones que recibieron cocaína mostraron incremento en su actividad y frecuencia cardiaca si consideramos que la cafeína genera taquicardias y arritmias cardiacas, encontramos una relación directa, por otro lado, siguieron con su comportamiento habitual de acicalarse y agruparse. Los que recibieron PBC también se mostraron hiperactivos, intercalando la actividad con momentos de quietud y a veces se les observaba como desorientados. Los ratones que fueron inoculados con PBC adulterada, también mostraron cambios en su comportamiento con alteración de la marcha y problemas para mantener el equilibrio, además de mostrarse somnolientos, quietos y con la respiración agita.

Tabla 4. Manifestaciones clínicas a dosis de 10 mg/kg.

Ratón	Control negative	Cocaína Cl. (control positivo)		
Blanco	Activo	muy hiperactivo, no descansa		
Cabeza	Interactúa con otros ratones y se agrupa	respiración agitada, no deja de acicalarse		
Lomo	Acicalamiento	alterna agitación con quietud, respiración agitada		

A la dosis de 10 mg/kg se incrementan las mismas manifestaciones que presentaron a la dosis más baja.

Tabla 5. Manifestaciones clínicas a dosis de 15 mg/kg

Ratón	Control negativo	PBC	Adulterado
Blanco	activo, acicalamiento	muy hiperactivo, ataxia, respira agitado, confundido, asustadizo	respira agitado, arrastre de tren posterior, intenta estar activo, acicalamiento, asustadizo
Cabeza	tranquilo, falta de hiperactividad	marcha inestable, tiende a agruparse	muy hiperactivo, confundido, ataxia
Lomo	acicalamiento	acicalamiento, respira agitado	marcha inestable, tienden a agruparse

Con la dosis de PBC a dosis de 15 mg/kg hay hiperactividad, respiración muy agitada; pero las alteraciones en la marcha aparecen en el grupo inoculado con PBC y en los ratones que recibieron PBC adulterada se hacen más evidentes; y en general los animales están asustadizos confundidos y permanecen quietos.

CAPITULO V: DISCUSIÓN

El grupo tratado con pasta básica más adulterante cafeína en ambas dosis (5mg/kg y 10 mg/kg y 15 mg/kg. Tabla Nro. 2) muestran alteraciones en la marcha (ataxia, arrastre del tren posterior y marcha apoyada en las paredes de la jaula) y algunos con manifestaciones de temblores, lo cual demuestra el fenómeno de sensibilización neuroquímica.

En cuanto al comportamiento los ratones tanto en el grupo con cocaína, con PBC y PBC adulterado, su comportamiento habitual, se ve incrementado con la dosis; mostrando intensidad en el acicalamiento y la actividad para luego ingresar a una etapa de letargia acompañada de dificultad respiratoria, quietud, los resultados neuroquímicos sugieren que la potenciación locomotora mediada por la cafeína, involucra mecanismos postsinápticos que afectan regiones importantes del SNC.

Los resultados obtenidos permiten concluir que la composición química de la PBC, contribuye al potencial adictivo de esta droga, la cafeína como adulterante facilita y potencias fenómenos claves como son la sensibilización y motivación en la búsqueda de la droga, lo cual finalmente demuestra la alta dependencia inducida por la PBC (31).

La dosis y el tiempo de exposición, mostraron los efectos tóxicos generados por adulterantes. En la medida que se incrementaron las concentraciones de droga en el momento de la administración a los ratones, se apreciaron resultados más evidentes en la afectación del sistema nervioso y la marcha. Se apreció que la muestra pasta básica más cafeína, aumentó los efectos psicoactivos, generando un potencial adictivo de la sustancia.

Los alcaloides constituyen un grave problema, y con la presencia de cafeína desarrolla un efecto estimulante agudo (32).

La cafeína fue el adulterante detectado en la pasta básica de cocaína, quedó confirmado en nuestro estudio y tiene relación con estudios anteriores. Nuestros resultados coincidieron con los aportes realizados por (9) cuando evaluamos el efecto estimulante de la cafeína, orientado a la dependencia y estímulo motivacional en los ratones.

Asimismo, nuestro trabajo coincide, cuando resume que la cafeína genera un efecto potenciador de la pasta básica de cocaína, aumentando el estado de vigilia, manteniéndolo hiperactivo, con disnea y acicalamiento pronunciado (33).

La velocidad con la cual esta droga llega al cerebro, aumenta el riesgo de dependencia generando un impacto negativo en la salud de los usuarios, no obstante, la cantidad de adulterantes que contiene, potencian su actividad farmacológica, la absorción de la cocaína esnifada, es más lenta que administrada por vida endovenosa, no obstante, ambas constituyen vías rápidas. (34).

A pesar de ser una droga con un bajo potencial adictivo, algunos estudios demuestran la contribución de cafeína al efecto reforzado de cocaína, lo cual se demuestra en la tabla Nro.5, donde detallamos el grado de hiperactividad que desarrollan los ratones.

La mayor actividad estimulante inducida por el alcaloide, es el resultado de una acción sinérgica entre la cocaína y cafeína, demostrando finalmente que la cafeína permite generar una fuerte dependencia en los consumidores (34)

La adulteración, es un proceso bastante común por los comercializadores con la finalidad de obtener réditos económicos, ignorando o minimizando los riesgos que implica los efectos toxicológicos en la salud mental de los adictos.

CAPITULO VI: CONCLUSIONES

Los adulterantes encontrados en las muestras analizadas, demostraron finalmente la presencia de almidón y cafeína, esta última induce el efecto estimulante y adictivo de la pasta básica de cocaína, con graves riesgos para la salud pública.

Los estudios de investigación finalmente demostraron el efecto que induce la pasta básica de cocaína, sobre el sistema nervioso alterando el patrón del sueño en ratas adultas, concluyendo que la administración de la pasta básica adulterada con cafeína, aumenta el estado de vigilia, la hiperactividad, acicalamiento, nerviosismo y dificultad respiratoria que se incrementan cuando se administran mayores dosis, ocasionando con ello un efecto de dependencia (36).

Asimismo, se pudo evaluar el rol que desarrolla la cafeína como principal adulterante en las muestras incautadas, con propiedades estimulantes similares a la cocaína acelerando el desarrollo de sensibilización y potenciando la expresión, resulta notorio entonces, la importancia que desarrollan los adulterantes en el efecto del abuso de las drogas ilícitas (37)

.

CAPITULO VII: RECOMENDACIONES

- Diseñar una política de estado, que permita reducir al mínimo los cultivos y producción de hoja de coca, es preocupante conocer que los lugareños prefieren incrementar su producción de alcaloides, por ventajas económicas, que reciben del narcotráfico.
- Incrementar las acciones de decomiso de drogas e insumos químicos, reforzando el control terrestre y fluvial, considerando la facilidad y la proximidad que tiene nuestra ciudad con los países fronterizos.
- Monitorizar el ingreso y salida de las embarcaciones en las provincias de Ramón Castilla y Maynas, considerando que en estas provincias se concentra mayor extensión de hectáreas de cultivo del ilícito alcaloide.
- Diseñar una política regional de lucha antidrogas, de manera que, las autoridades regionales asuman compromisos específicos en los distintos factores que favorecen su producción y consumo buscando el desarrollo alternativo, prevención y tratamiento.
- La prevención y Promoción de docentes y estudiantes de la Facultad de Farmacia en colegios, asociaciones civiles y otras Facultades de nuestra Universidad, permitirá informar de manera objetiva y directa a los jóvenes, del riesgo en el consumo de estas sustancias.
- Es necesario sensibilizar a nuestra comunidad, y a nuestros jóvenes en particular, del enorme desafío que representa el mantenerse alejado de las drogas, manteniendo una vida sana en la cultura del deporte.

.

CAPÍTULO VIII: REFERENCIAS BIBLIOGRÁFICAS

- 1.- Pérez GE. Exploración de las necesidades ocupacionales de las personas con drogodependencias en su contexto natural tras finalizar tratamiento en una comunidad terapéutica. Tesis maestría. Universidad la Coruña. España. Facultad de Ciencias de la salud (2016)
- 2.- Cole C, Jones L, McVeigh, J, Kicman. (2010). Cut: A Guide to Adulterants, Bulking Agents and Other Contaminants found in Illicit Drugs.
- 3.- Evrard I, Legleye S, Cadet-Taïroua A. Composition, purity and perceived quality of street cocaine in France. Int J Drug Policy 2010; 21:399-406.
- 4.- Cole C, Jones L, McVeigh J, Kicman A, Syedc Q, Bellis M. Adulterants in illicit drugs: a review of empirical evidence. Drug Test Anal 2011; 3:89-96
- 5.- Antoniou K, Kafetzopoulos E, Papadopoulou-Daifotib Z. D-amphetamine, cocaine and caffeine: a comparative study of acute effects on locomotor activity and behavioral patterns in rats. Neurosci Biobehav Rev 1998; 23:189-196
- 6.- Schwarzkopf, N. Efecto agudo de la pasta base de cocaína sobre el sueño y la actividad electroencefalografía: rol de la cafeína. Tesis de Maestría en ciencias biológicas. PEDECIBA Sub área Neurociencias. Facultad de Medicina. Edit. Udelar FC. (2017).
- 7.- Sánchez-Rivera, M. M, & Bello-Pérez, L. A. (2008). Efecto de la temperatura en la reacción de oxidación del almidón de plátano (Musa paradisiaca L.). Estimación de la energía de activación. *Revista mexicana de ingeniería química*, 7(3), 275-281.
- 8.-Prieto, JP. (2020). Cambios funcionales y moleculares implicados en la acción potenciadora de la cafeína sobre el efecto reforzador de la pasta base de cocaína: evaluación del cannabidiol como potencial tratamiento. Udelar FC.2020. Disponible en

https://www.colibri.udelar.edu.uy

- 9.- Kruschinski, T. Encuesta de los principales adulterantes encontrados en muestras de cocaína: una revisión de alcance. CICAD. Vol. I.2019.
- 10.- Juanena, C, Cappelletti, F, Pascale, A, Negrín. (2017). Cocaína adulterada con levamisol: reporte de tres casos clínicos. *Revista Médica del Uruguay*, 33(2), 139-158.
- 11.- Schwarzkopf, N. Efecto agudo de la pasta base de cocaína sobre el sueño y la actividad electroencefalografía: Rol de la cafeína. Tesis de Maestría en ciencias biológicas. PEDECIBA Sub área Neurociencias. Facultad de Medicina. Edit. Udelar FC (2017).
- 12.- Galvalisi, M. Efectos neuroquímicos y comportamentales inducidos por pasta base de cocaína inhalada en ratas. Tesis de maestría. Universidad de la República. Uruguay. Facultad de Ciencias. PEDECIBA.Edit. Udelar FC. (2016)
- 13.- Moncayo Molina, W, Machado Muñoz, J, & Tapia Alulema, M. (2017). Caracterización de muestras de cocaína inorgánica en una provincia ecuatoriana. *Revista Eugenio Espejo*, 11(2), 26-
- 14.- García Díaz, J. A. La situación del narcotráfico en la región Loreto. Instituto de estudios internacionales .Pontificia Universidad Católica .Edición I (2013)
- 15.- Téllez Mosquera, J, & Cote Menéndez, M. (2005). Efectos toxicológicos y neuropsiquiátricos producidos por consumo de cocaína. *Revista de la Facultad de Medicina*, 53(1), 10-26.
- 16.- Moraes, M, Scorza, C., Abin-Carriquiry, J. A., (2010). Consumo de pasta base de cocaína en Uruguay en el embarazo, su incidencia, características y repercusiones. *Archivos de Pediatría del Uruguay*, *81*(2), 100-104.
- 17.- Prieto, JP. (2015). Estudio pre-clínico de los factores implicados en la dependencia a pasta base de cocaína: rol de la cafeína como principal adulterante.

- 18.- Morales-Bustamante, J.F, & Berrouet-Mejía, M. C. (2012). Cocaína y estado convulsivo. *CES Medicina*, *26*(2), 215-221.
- 19.- Radulovacki M, Watlovitch R (1997) Estudio del rebote del sueño REM por cafeína en ratas. Pubmed.NCBI. Retrieved from http://www.ncbi.lnm.gob.pubmed 7417568.
- 20.- Gálligo, F. (2007). Drogas: Conceptos generales, epidemiología y valoración del consumo. *Barc Sn.*
- 21.- Larrosa, S.L, & Palomo, J. L. R. A. (2012). Factores de riesgo y de protección en el consumo de drogas y la conducta antisocial en adolescentes y jóvenes españoles. *International Journal of Psychological Research*, *5*(1), 25-33
- 22.- Castillo-Granada, A. L., Ríos-Calderón, O. S., Soto-Páez, R., Benítez-Escamilla, T., & Contreras-Cruz, D. A. (2021). Cómics para el aprendizaje de la espectroscopia infrarroja. *Educación química*, *32*(2), 11-20.
- 23.- Moraes Castro, M, González Rabelino, G., Castelli Rodríguez, L. (2016). *Consumo de pasta base de cocaína y cocaína en mujeres durante el embarazo*. UR. Espacio Interdisciplinario.
- 24.-Macho Aparicio. (2002). Metodologías analíticas basadas en espectroscopia de infrarrojo y calibración multivariante. Aplicación a la industria petroquímica (Tesis Doctoral). Universitat Rovira i Virgili. Tarragona
- 25.- Hargreaves, M.D; Edwards, H.G; Chalmers, J.M. Infrarred and Raman spectroscopy in Forensic Sciencie. John Wiley & Sons. New York. 2012
- 26.-Martín-Zarco, J.G, García, P.O, & De Córdoba, J.L.F. (2003). Toxicidad por administración tópica de lidocaína. *Acta Otorrinolaringológica Española*, *54*(9), 657-660.
- 27.-Fernández S J. Contribución al conocimiento morfológico y patogénico de la nefropatía por analgésicos. Tesis doctoral. Universidad de Sevilla. Dialnet (1975)

- 28.-Ayala, S, Chicahual, B, Duffau, B, & Vargas, G. (2019). Cocaina base en Chile, 10 años de análisis. *Revista del Instituto de Salud Pública de Chile*, *3*(2).
- 29.-Molina, W.M, Muñoz, J M, Alulema, M.T, & Briceño, J. I. O. C. (2017). Caracterización de muestras de cocaína inorgánica en una provincia ecuatoriana. *Revista Eugenio Espejo*, *11*(2), 26-36.
- 30.-Prieto, JP. Estudio pre-clínico de los factores implicados en la dependencia a pasta base de cocaína: rol de la cafeína como principal adulterante. Tesis magister en ciencias biológicas. Universidad de la República (Uruguay). Edit.UR.FC (2015)
- 31.- Schwarzkopf, N. Efecto agudo de la pasta base de cocaína sobre el sueño y la actividad electroencefalografía: Rol de la cafeína. Tesis de Maestría en ciencias biológicas. PEDECIBA Sub área Neurociencias. Facultad de Medicina. Edit. Udelar FC (2017).
- 32.- Trelles, L. (1988). Mecanismos celulares de la adicción a la cocaína: base para un tratamiento medicamentoso. *Revista de Psicología*, *6*(1), 63-73.
- 33.-Prieto, JP, Meikle, M.N, López Hill, X, (2012). Relevancia del adulterante activo cafeína en la acción estimulante de la pasta base de cocaína. *Rev. psiquiatr. Urug*, 35-48.
- 34.- Galvalisi, M. Efectos neuroquímicos y comportamentales inducidos por pasta base de cocaína inhalada en ratas. Tesis de maestría. Universidad de la República. Uruguay. Facultad de Ciencias. PEDECIBA.Edit. Udelar FC. (2016)
- .35.- Prieto, JP. Evaluación de la ansiedad en animales luego de la administración repetida de los componentes activos de la pasta base de cocaína y un período de abstinencia: efecto de clozapina. Tesis de grado Universidad de la República. Uruguay. Edit.UR.FC (2011)
- 36.-Chabur, J. E. de Moya Mejía, M. Zapata, P., & Martínez, J. W. (2004). Actividad motora, ánimo y sueño durante los primeros quince días de abstinencia de base de cocaína. *Revista Médica de Risaralda*.

37.-Prieto, JP. Cambios funcionales y moleculares implicados en la acción potenciadora de la cafeína sobre el efecto reforzador de la pasta base de cocaína: evaluación del cannabidiol como potencial tratamiento. Titulo doctoral. Universidad de la República. Uruguay. Edit. Udelar FC (2020)

ANEXOS

FIGURA 1. Toma de muestra para el análisis de drogas cocainicas.

FIGURA 2. Pruebas analíticas en Ministerio Publico para la identificación de drogas

FIGURA 3. Bandas de absorción en espectroscopia infrarrojo.

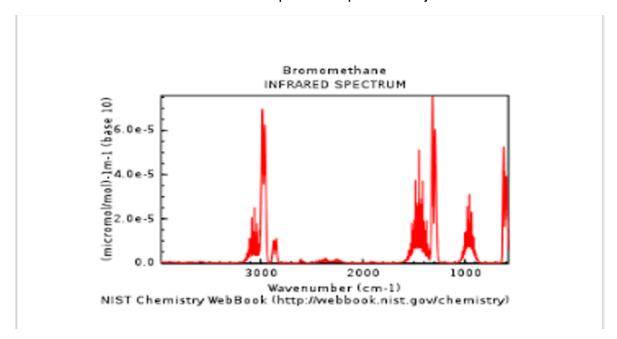


FIGURA 4. Equipo de espectrofotometría infrarrojo

FIGURA 5. Lectura en equipo de Espectrofotometría IR

FIGURA 6. Incautación de Pasta Básica De Cocaína (PBC)

FIGURA 7. Estructura química de los alcaloides

FIGURA 8. Frontis del Ministerio Público-Unidad Médico Legal-Loreto

FIGURA 9. Analizando las diferentes coloraciones a través de una Batería

- Muestra pura - Muestra adulterada. -Análisis preliminar.

FIGURA 10. Identificación de Coloraciones con muestras adulteradas con Harina- Procaína (anestésicos)- Análisis Preliminar.

FIGURA 2. Batería de Reactivos de Identificación utilizados en análisis preliminar

FIGURA 3. Reactivos utilizados y las diferentes muestras adulteradas donde al utilizar Reactivo de Lugol – Ácido Clorhídrico y Reactivo Tiocianato de cobalto se identifica por coloración de las muestras los adulterantes y la sustancia pura.

FIGURA 4. Baterías utilizadas con muestras puras y adulterantes.

FIGURA 5. Análisis preliminar e identificación por Colorimetría.

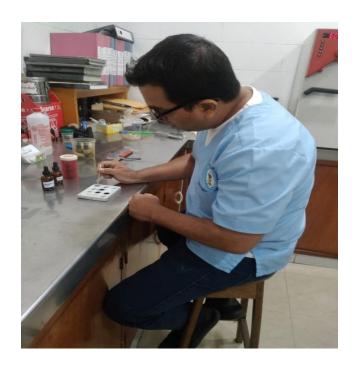


FIGURA 15. Administración vía intraperitoneal de ratones

