Modelo espacial de unidades de suelo en el ámbito de la carretera Iquitos-Nauta, Loreto (Perú)
Abstract
El estudio realizado nos presenta los resultados de los procesos de predicción
basados en parámetros del suelo del área de influencia de la carretera Iquitos
– Nauta, teniendo como objetivo elaborar un modelo de distribución espacial
del porcentaje de los parámetros: arena, limo y arcilla. La accesibilidad y
rapidez de poder predecir y así conocer los parámetros del suelo con el menor
gasto de recursos, es lo más importante que esta investigación busca aportar,
en áreas de estudio como: la gestión del territorio, ambiental, planificación,
entre otras. En el proceso metodológico se aplicó interpoladores
geoestadísticos como el kriging ordinario y la distancia inversa ponderada
(IDW), usan la técnica de predicción basados en la influencia de datos
previamente muestreados y que se encuentren distribuidos de manera
cercana. El área de estudio cuenta con una clasificación de suelos elaborado
por el Instituto de Investigación de la Amazonia Peruana lo cual fue usado
como base para determinar la predicción de los dos interpoladores. Previo a
esto se seleccionó los parámetros usando procedimientos estadísticos como
la distribución normal, histogramas para determinar cuáles serán interpolados,
se determinó los parámetros arena, arcilla y limo. Los resultados nos muestran
los coeficientes de correlación de Pearson de los parámetros: arena, limo y
arcilla de 0.720; 0.286 y 0.553 respectivamente con el kriging a diferencia de
0.757; 0.799 y 0.551 respectivamente con el IDW, siendo este interpolador
con valores más cercanos a la unidad de los tres parámetros, eso quiere decir
que tiene más relación con los parámetros de campo. The study carried out presents the results of the prediction processes based
on soil parameters of the Iquitos - Nauta highway area of influence in order to
develop a spatial distribution model of the percentage of the parameters: sand,
silt and clay. The accessibility and speed of being able to predict and thus
know the soil parameters with the lowest expenditure of resources, is the most
important contribution this research aims at in areas of study such as: land and
environment management, planning, among others. In the methodological
process, geostatistical interpolators such as ordinary kriging and the weighted
inverse distance (IDW) were applied. They use the prediction technique based
on the influence of previously sampled data that are closely distributed. The
study area has a soil classification prepared by the Research Institute of the
Peruvian Amazon which was used as a basis to determine the prediction of
the two interpolators. Prior to this, the parameters were selected using
statistical procedures such as the normal distribution and histograms to
determine which parameters to be interpolated. Sand, clay and silt parameters
were determined. The results show that the Pearson correlation coefficients of
the parameters: sand, silt and clay were 0.720; 0.286 and 0.553 respectively
with kriging as opposed to 0.757; 0.799 and 0.551 respectively with the IDW,
being this interpolator with values closer to the unit of the three parameters.
That means, it has more relation with the field parameters.
Collections
- Tesis [381]
The following license files are associated with this item: